Spaces:
Running
Running
File size: 8,429 Bytes
f7b47a4 f543a16 f7b47a4 f543a16 f7b47a4 058db9e f7b47a4 058db9e f7b47a4 058db9e f7b47a4 058db9e f7b47a4 f543a16 f7b47a4 f543a16 f7b47a4 f543a16 f7b47a4 f543a16 f7b47a4 f543a16 f7b47a4 f543a16 f7b47a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import chess
import json
import numpy as np
import os
import random
import torch
import torch.nn as nn
from flask import Flask, render_template, request, jsonify, send_from_directory
app = Flask(__name__)
app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0
PIECE_TO_PLANE = {
'P': 0, 'N': 1, 'B': 2, 'R': 3, 'Q': 4, 'K': 5,
'p': 6, 'n': 7, 'b': 8, 'r': 9, 'q': 10, 'k': 11
}
CASTLING_INDICES = {'K': 12, 'Q': 13, 'k': 14, 'q': 15}
def fen_to_tensor_perspective(fen: str) -> torch.Tensor:
board = chess.Board(fen)
tensor = np.zeros((17, 8, 8), dtype=np.float32)
if board.turn == chess.WHITE:
piece_to_plane = PIECE_TO_PLANE
flip = False
else:
piece_to_plane = {
'P': 6, 'N': 7, 'B': 8, 'R': 9, 'Q': 10, 'K': 11,
'p': 0, 'n': 1, 'b': 2, 'r': 3, 'q': 4, 'k': 5
}
flip = True
parts = fen.split()
rows = parts[0].split('/')
for r, row in enumerate(rows):
f = 0
for c in row:
if c.isdigit():
f += int(c)
else:
plane = piece_to_plane[c]
tensor[plane, r, f] = 1.0
f += 1
if 'K' in parts[2]: tensor[12, :, :] = 1.0
if 'Q' in parts[2]: tensor[13, :, :] = 1.0
if 'k' in parts[2]: tensor[14, :, :] = 1.0
if 'q' in parts[2]: tensor[15, :, :] = 1.0
if board.ep_square is not None:
ep_rank = 7 - (board.ep_square // 8)
ep_file = board.ep_square % 8
tensor[16, ep_rank, ep_file] = 1.0
if flip:
tensor = np.flip(tensor, axis=(1, 2)).copy()
return torch.tensor(tensor, dtype=torch.float32)
class ResidualBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(channels)
def forward(self, x):
identity = x
out = self.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += identity
return self.relu(out)
class ChessPolicyValueNet(nn.Module):
def __init__(self, input_planes, policy_size, num_blocks=12, channels=128):
super().__init__()
self.conv_in = nn.Conv2d(input_planes, channels, kernel_size=3, padding=1, bias=False)
self.bn_in = nn.BatchNorm2d(channels)
self.res_blocks = nn.Sequential(*[ResidualBlock(channels) for _ in range(num_blocks)])
self.policy_conv = nn.Conv2d(channels, 2, kernel_size=1)
self.policy_bn = nn.BatchNorm2d(2)
self.policy_fc = nn.Linear(2 * 8 * 8, policy_size)
self.value_conv = nn.Conv2d(channels, 1, kernel_size=1)
self.value_bn = nn.BatchNorm2d(1)
self.value_fc1 = nn.Linear(8 * 8, 256)
self.value_fc2 = nn.Linear(256, 3)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.relu(self.bn_in(self.conv_in(x)))
x = self.res_blocks(x)
p = self.relu(self.policy_bn(self.policy_conv(x))).view(x.size(0), -1)
p = self.policy_fc(p)
v = self.relu(self.value_bn(self.value_conv(x))).view(x.size(0), -1)
v = self.relu(self.value_fc1(v))
v = self.value_fc2(v)
return p, v
with open("move_to_idx.json", "r") as f:
move_to_idx = json.load(f)
idx_to_move = {int(i): m for m, i in move_to_idx.items()}
book = {}
for filename in ["book1.json", "book2.json", "book3.json", "book4.json"]:
with open(filename, "r") as f:
for line in f:
entry = json.loads(line)
book[entry["fen"]] = entry["moves"]
def get_positional_fen(fen: str) -> str:
return " ".join(fen.split(" ")[:4])
def get_book_move(fen: str):
pos_fen = get_positional_fen(fen)
moves = book.get(pos_fen)
if not moves:
return None
uci_moves = [m[0] for m in moves]
weights = [m[1] for m in moves]
total = sum(weights)
if total == 0:
# Should never happen methinks
return None
probabilities = [w / total for w in weights]
return random.choices(uci_moves, weights=probabilities, k=1)[0]
model = ChessPolicyValueNet(input_planes=17, policy_size=len(move_to_idx))
model.load_state_dict(torch.load("model.pt", map_location="cpu")['model_state_dict'])
model.eval()
class MCTSNode:
def __init__(self, board, parent=None, move=None, prior=0.0):
self.board = board
self.parent = parent
self.move = move
self.children = {}
self.visits = 0
self.value_sum = 0.0
self.prior = prior
def value(self):
return self.value_sum / self.visits if self.visits > 0 else 0.0
def expand_node(node, top_k=10):
legal_moves = list(node.board.legal_moves)
tensor = fen_to_tensor_perspective(node.board.fen()).unsqueeze(0)
with torch.no_grad():
logits, value = model(tensor)
policy = torch.softmax(logits[0], dim=0)
move_priors = []
for move in legal_moves:
uci = move.uci()
if uci in move_to_idx:
prior = policy[move_to_idx[uci]].item()
move_priors.append((move, prior))
# Keep only the top K moves by prior
move_priors = sorted(move_priors, key=lambda x: x[1], reverse=True)[:top_k]
for move, prior in move_priors:
board_copy = node.board.copy()
board_copy.push(move)
node.children[move.uci()] = MCTSNode(board_copy, parent=node, move=move, prior=prior)
return value[0]
def select_child(node, c_puct=1.0):
total_visits = sum(child.visits for child in node.children.values()) + 1
best_score = -float('inf')
best_child = None
for child in node.children.values():
u = child.value() + c_puct * child.prior * (total_visits ** 0.5 / (1 + child.visits))
if u > best_score:
best_score = u
best_child = child
return best_child
def backpropagate(node, value):
current = node
win_prob = torch.softmax(value, dim=0)[0].item()
while current:
current.visits += 1
current.value_sum += win_prob
current = current.parent
def run_mcts_or_play_book_move(root_board, simulations=1000, top_k=10, fen=None):
best = get_book_move(fen)
if best is None:
root = MCTSNode(root_board)
expand_node(root, top_k=top_k)
for _ in range(simulations):
node = root
while node.children:
node = select_child(node)
if node.board.is_game_over():
outcome = node.board.result()
if outcome == "1-0":
value = torch.tensor([1.0, 0.0, 0.0])
elif outcome == "0-1":
value = torch.tensor([0.0, 0.0, 1.0])
else:
value = torch.tensor([0.0, 1.0, 0.0])
else:
value = expand_node(node, top_k=top_k)
backpropagate(node, value)
best = max(root.children.values(), key=lambda c: c.visits)
return best.move.uci()
return best
@app.route("/")
def index():
return render_template("index.html")
@app.route("/start-game", methods=["GET"])
def start_game():
board = chess.Board()
computer_color = random.choice(['white', 'black'])
move = None
if computer_color == 'white':
move = run_mcts_or_play_book_move(board, simulations=100, top_k=10, fen=board.fen())
board.push(chess.Move.from_uci(move))
return jsonify({
"fen": board.fen(),
"computer_color": computer_color,
"move": move
})
@app.route("/model-move", methods=["POST"])
def model_move():
data = request.get_json()
fen = data["fen"]
board = chess.Board(fen)
if board.is_game_over():
return jsonify({"error": "Game is over."})
best_move = run_mcts_or_play_book_move(board, simulations=100, top_k=10, fen=board.fen())
board.push(chess.Move.from_uci(best_move))
return jsonify({
"fen": board.fen(),
"move": best_move
})
@app.route('/favicon.ico')
def favicon():
return send_from_directory(os.path.join(app.root_path, 'static'), 'favicon.ico', mimetype='image/vnd.microsoft.icon')
if __name__ == "__main__":
app.run(debug=True, host="0.0.0.0", port=7860)
|