dennisvdang's picture
Flatten directory structure for simpler imports
ad0da04
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Module for audio feature extraction and processing."""
import os
import subprocess
import time
from functools import reduce
from pathlib import Path
from typing import List, Tuple, Optional, Dict, Any, Union
import librosa
import numpy as np
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from sklearn.preprocessing import StandardScaler
from chorus_detection.config import SR, HOP_LENGTH, AUDIO_TEMP_PATH
from chorus_detection.utils.logging import logger
def extract_audio(url: str, output_path: str = str(AUDIO_TEMP_PATH)) -> Tuple[Optional[str], Optional[str]]:
"""Download audio from YouTube URL and save as MP3 using yt-dlp.
Args:
url: YouTube URL of the audio file
output_path: Path to save the downloaded audio file
Returns:
Tuple containing path to the downloaded audio file and the video title, or None if download fails
"""
try:
# Create output directory if it doesn't exist
os.makedirs(output_path, exist_ok=True)
# Create a unique filename using timestamp
timestamp = int(time.time())
output_file = os.path.join(output_path, f"audio_{timestamp}.mp3")
# Get the video title first
video_title = get_video_title(url) or f"Video_{timestamp}"
# Download the audio
success, error_msg = download_audio(url, output_file)
if not success:
handle_download_error(error_msg)
return None, None
# Check if file exists and is valid
if os.path.exists(output_file) and os.path.getsize(output_file) > 0:
logger.info(f"Successfully downloaded: {video_title}")
return output_file, video_title
else:
logger.error("Download completed but file not found or empty")
return None, None
except Exception as e:
import traceback
error_details = traceback.format_exc()
logger.error(f"An error occurred during YouTube download: {e}")
logger.debug(f"Error details: {error_details}")
check_yt_dlp_installation()
return None, None
def get_video_title(url: str) -> Optional[str]:
"""Get the title of a YouTube video.
Args:
url: YouTube URL
Returns:
Video title if successful, None otherwise
"""
try:
title_command = ['yt-dlp', '--get-title', '--no-warnings', url]
video_title = subprocess.check_output(title_command, universal_newlines=True).strip()
return video_title
except subprocess.CalledProcessError as e:
logger.warning(f"Could not retrieve video title: {str(e)}")
return None
def download_audio(url: str, output_file: str) -> Tuple[bool, str]:
"""Download audio from YouTube URL using yt-dlp.
Args:
url: YouTube URL
output_file: Output file path
Returns:
Tuple containing (success, error_message)
"""
command = [
'yt-dlp',
'-f', 'bestaudio',
'--extract-audio',
'--audio-format', 'mp3',
'--audio-quality', '0', # Best quality
'--output', output_file,
'--no-playlist',
'--verbose',
url
]
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
universal_newlines=True
)
stdout, stderr = process.communicate()
if process.returncode != 0:
error_msg = f"Error downloading from YouTube (code {process.returncode}): {stderr}"
return False, error_msg
return True, ""
def handle_download_error(error_msg: str) -> None:
"""Handle common YouTube download errors with helpful messages.
Args:
error_msg: Error message from yt-dlp
"""
logger.error(error_msg)
if "Sign in to confirm you're not a bot" in error_msg:
logger.error("YouTube is detecting automated access. Try using a local file instead.")
elif any(x in error_msg.lower() for x in ["unavailable video", "private video"]):
logger.error("The video appears to be private or unavailable. Please try another URL.")
elif "copyright" in error_msg.lower():
logger.error("The video may be blocked due to copyright restrictions.")
elif any(x in error_msg.lower() for x in ["rate limit", "429"]):
logger.error("YouTube rate limit reached. Please try again later.")
def check_yt_dlp_installation() -> None:
"""Check if yt-dlp is installed and provide guidance if it's not."""
try:
subprocess.run(['yt-dlp', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
except FileNotFoundError:
logger.error("yt-dlp is not installed or not in PATH. Please install it with: pip install yt-dlp")
def strip_silence(audio_path: str) -> None:
"""Remove silent parts from an audio file.
Args:
audio_path: Path to the audio file
"""
try:
sound = AudioSegment.from_file(audio_path)
nonsilent_ranges = detect_nonsilent(
sound, min_silence_len=500, silence_thresh=-50)
if not nonsilent_ranges:
logger.warning("No non-silent parts detected in the audio. Using original file.")
return
stripped = reduce(lambda acc, val: acc + sound[val[0]:val[1]],
nonsilent_ranges, AudioSegment.empty())
stripped.export(audio_path, format='mp3')
except Exception as e:
logger.error(f"Error stripping silence: {e}")
logger.info("Proceeding with original audio file")
class AudioFeature:
"""Class for extracting and processing audio features."""
def __init__(self, audio_path: str, sr: int = SR, hop_length: int = HOP_LENGTH):
"""Initialize the AudioFeature class.
Args:
audio_path: Path to the audio file
sr: Sample rate for audio processing
hop_length: Hop length for feature extraction
"""
self.audio_path: str = audio_path
self.sr: int = sr
self.hop_length: int = hop_length
self.time_signature: int = 4
# Initialize all features as None
self.y: Optional[np.ndarray] = None
self.y_harm: Optional[np.ndarray] = None
self.y_perc: Optional[np.ndarray] = None
self.beats: Optional[np.ndarray] = None
self.chroma_acts: Optional[np.ndarray] = None
self.chromagram: Optional[np.ndarray] = None
self.combined_features: Optional[np.ndarray] = None
self.key: Optional[str] = None
self.mode: Optional[str] = None
self.mel_acts: Optional[np.ndarray] = None
self.melspectrogram: Optional[np.ndarray] = None
self.meter_grid: Optional[np.ndarray] = None
self.mfccs: Optional[np.ndarray] = None
self.mfcc_acts: Optional[np.ndarray] = None
self.n_frames: Optional[int] = None
self.onset_env: Optional[np.ndarray] = None
self.rms: Optional[np.ndarray] = None
self.spectrogram: Optional[np.ndarray] = None
self.tempo: Optional[float] = None
self.tempogram: Optional[np.ndarray] = None
self.tempogram_acts: Optional[np.ndarray] = None
def detect_key(self, chroma_vals: np.ndarray) -> Tuple[str, str]:
"""Detect the key and mode (major or minor) of the audio segment.
Args:
chroma_vals: Chromagram values to analyze for key detection
Returns:
Tuple containing the detected key and mode
"""
note_names = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
# Key profiles (Krumhansl-Kessler profiles)
major_profile = np.array([6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29, 2.88])
minor_profile = np.array([6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69, 3.34, 3.17])
# Normalize profiles
major_profile /= np.linalg.norm(major_profile)
minor_profile /= np.linalg.norm(minor_profile)
# Calculate correlations for all possible rotations
major_correlations = [np.corrcoef(chroma_vals, np.roll(major_profile, i))[0, 1] for i in range(12)]
minor_correlations = [np.corrcoef(chroma_vals, np.roll(minor_profile, i))[0, 1] for i in range(12)]
# Find max correlation
max_major_idx = np.argmax(major_correlations)
max_minor_idx = np.argmax(minor_correlations)
# Determine mode
self.mode = 'major' if major_correlations[max_major_idx] > minor_correlations[max_minor_idx] else 'minor'
self.key = note_names[max_major_idx if self.mode == 'major' else max_minor_idx]
return self.key, self.mode
def calculate_ki_chroma(self, waveform: np.ndarray, sr: int, hop_length: int) -> np.ndarray:
"""Calculate a normalized, key-invariant chromagram for the given audio waveform.
Args:
waveform: Audio waveform to analyze
sr: Sample rate of the waveform
hop_length: Hop length for feature extraction
Returns:
The key-invariant chromagram as a numpy array
"""
# Calculate chromagram
chromagram = librosa.feature.chroma_cqt(
y=waveform, sr=sr, hop_length=hop_length, bins_per_octave=24)
# Normalize to [0, 1]
chromagram = (chromagram - chromagram.min()) / (chromagram.max() - chromagram.min() + 1e-8)
# Detect key
chroma_vals = np.sum(chromagram, axis=1)
key, mode = self.detect_key(chroma_vals)
# Make key-invariant
key_idx = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'].index(key)
shift_amount = -key_idx if mode == 'major' else -(key_idx + 3) % 12
return librosa.util.normalize(np.roll(chromagram, shift_amount, axis=0), axis=1)
def extract_features(self) -> None:
"""Extract various audio features from the loaded audio."""
# Load audio
self.y, self.sr = librosa.load(self.audio_path, sr=self.sr)
# Harmonic-percussive source separation
self.y_harm, self.y_perc = librosa.effects.hpss(self.y)
# Extract spectrogram
self.spectrogram, _ = librosa.magphase(librosa.stft(self.y, hop_length=self.hop_length))
# RMS energy
self.rms = librosa.feature.rms(S=self.spectrogram, hop_length=self.hop_length).astype(np.float32)
# Mel spectrogram and activations
self.melspectrogram = librosa.feature.melspectrogram(
y=self.y, sr=self.sr, n_mels=128, hop_length=self.hop_length).astype(np.float32)
self.mel_acts = librosa.decompose.decompose(self.melspectrogram, n_components=3, sort=True)[1].astype(np.float32)
# Chromagram and activations
self.chromagram = self.calculate_ki_chroma(self.y_harm, self.sr, self.hop_length).astype(np.float32)
self.chroma_acts = librosa.decompose.decompose(self.chromagram, n_components=4, sort=True)[1].astype(np.float32)
# Onset detection and tempogram
self.onset_env = librosa.onset.onset_strength(y=self.y_perc, sr=self.sr, hop_length=self.hop_length)
self.tempogram = np.clip(librosa.feature.tempogram(
onset_envelope=self.onset_env, sr=self.sr, hop_length=self.hop_length), 0, None)
self.tempogram_acts = librosa.decompose.decompose(self.tempogram, n_components=3, sort=True)[1]
# MFCCs and activations
self.mfccs = librosa.feature.mfcc(y=self.y, sr=self.sr, n_mfcc=20, hop_length=self.hop_length)
self.mfccs += abs(np.min(self.mfccs) or 0) # Handle negative values
self.mfcc_acts = librosa.decompose.decompose(self.mfccs, n_components=4, sort=True)[1].astype(np.float32)
# Combine features with weighted normalization
self._combine_features()
def _combine_features(self) -> None:
"""Combine all extracted features with balanced weights."""
features = [self.rms, self.mel_acts, self.chroma_acts, self.tempogram_acts, self.mfcc_acts]
feature_names = ['rms', 'mel_acts', 'chroma_acts', 'tempogram_acts', 'mfcc_acts']
# Calculate dimension-based weights
dims = {name: feature.shape[0] for feature, name in zip(features, feature_names)}
total_inv_dim = sum(1 / dim for dim in dims.values())
weights = {name: 1 / (dims[name] * total_inv_dim) for name in feature_names}
# Normalize and weight each feature
std_weighted_features = [
StandardScaler().fit_transform(feature.T).T * weights[name]
for feature, name in zip(features, feature_names)
]
# Combine features
self.combined_features = np.concatenate(std_weighted_features, axis=0).T.astype(np.float32)
self.n_frames = len(self.combined_features)
def create_meter_grid(self) -> np.ndarray:
"""Create a grid based on the meter of the song using tempo and beats.
Returns:
Numpy array containing the meter grid frame positions
"""
# Extract tempo and beat information
self.tempo, self.beats = librosa.beat.beat_track(
onset_envelope=self.onset_env, sr=self.sr, hop_length=self.hop_length)
# Adjust tempo if it's too slow or too fast
self.tempo = self._adjust_tempo(self.tempo)
# Create meter grid
self.meter_grid = self._create_meter_grid()
return self.meter_grid
def _adjust_tempo(self, tempo: float) -> float:
"""Adjust tempo to a reasonable range.
Args:
tempo: Detected tempo
Returns:
Adjusted tempo
"""
if tempo < 70:
return tempo * 2
elif tempo > 140:
return tempo / 2
return tempo
def _create_meter_grid(self) -> np.ndarray:
"""Helper function to create a meter grid for the song.
Returns:
Numpy array containing the meter grid frame positions
"""
# Calculate beat interval
seconds_per_beat = 60 / self.tempo
beat_interval = int(librosa.time_to_frames(seconds_per_beat, sr=self.sr, hop_length=self.hop_length))
# Find best matching start beat
if len(self.beats) >= 3:
best_match = max(
(1 - abs(np.mean(self.beats[i:i+3]) - beat_interval) / beat_interval, self.beats[i])
for i in range(len(self.beats) - 2)
)
anchor_frame = best_match[1] if best_match[0] > 0.95 else self.beats[0]
else:
anchor_frame = self.beats[0] if len(self.beats) > 0 else 0
first_beat_time = librosa.frames_to_time(anchor_frame, sr=self.sr, hop_length=self.hop_length)
# Calculate beats forward and backward
time_duration = librosa.frames_to_time(self.n_frames, sr=self.sr, hop_length=self.hop_length)
num_beats_forward = int((time_duration - first_beat_time) / seconds_per_beat)
num_beats_backward = int(first_beat_time / seconds_per_beat) + 1
# Create beat times
beat_times_forward = first_beat_time + np.arange(num_beats_forward) * seconds_per_beat
beat_times_backward = first_beat_time - np.arange(1, num_beats_backward) * seconds_per_beat
# Combine and create meter grid
beat_grid = np.concatenate((np.array([0.0]), beat_times_backward[::-1], beat_times_forward))
meter_indices = np.arange(0, len(beat_grid), self.time_signature)
meter_grid = beat_grid[meter_indices]
# Ensure grid starts at 0 and ends at frame duration
if meter_grid[0] != 0.0:
meter_grid = np.insert(meter_grid, 0, 0.0)
# Convert to frames
meter_grid = librosa.time_to_frames(meter_grid, sr=self.sr, hop_length=self.hop_length)
# Ensure grid ends at the last frame
if meter_grid[-1] != self.n_frames:
meter_grid = np.append(meter_grid, self.n_frames)
return meter_grid