Spaces:
Running
Running
File size: 16,380 Bytes
ad0da04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Module for audio feature extraction and processing."""
import os
import subprocess
import time
from functools import reduce
from pathlib import Path
from typing import List, Tuple, Optional, Dict, Any, Union
import librosa
import numpy as np
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from sklearn.preprocessing import StandardScaler
from chorus_detection.config import SR, HOP_LENGTH, AUDIO_TEMP_PATH
from chorus_detection.utils.logging import logger
def extract_audio(url: str, output_path: str = str(AUDIO_TEMP_PATH)) -> Tuple[Optional[str], Optional[str]]:
"""Download audio from YouTube URL and save as MP3 using yt-dlp.
Args:
url: YouTube URL of the audio file
output_path: Path to save the downloaded audio file
Returns:
Tuple containing path to the downloaded audio file and the video title, or None if download fails
"""
try:
# Create output directory if it doesn't exist
os.makedirs(output_path, exist_ok=True)
# Create a unique filename using timestamp
timestamp = int(time.time())
output_file = os.path.join(output_path, f"audio_{timestamp}.mp3")
# Get the video title first
video_title = get_video_title(url) or f"Video_{timestamp}"
# Download the audio
success, error_msg = download_audio(url, output_file)
if not success:
handle_download_error(error_msg)
return None, None
# Check if file exists and is valid
if os.path.exists(output_file) and os.path.getsize(output_file) > 0:
logger.info(f"Successfully downloaded: {video_title}")
return output_file, video_title
else:
logger.error("Download completed but file not found or empty")
return None, None
except Exception as e:
import traceback
error_details = traceback.format_exc()
logger.error(f"An error occurred during YouTube download: {e}")
logger.debug(f"Error details: {error_details}")
check_yt_dlp_installation()
return None, None
def get_video_title(url: str) -> Optional[str]:
"""Get the title of a YouTube video.
Args:
url: YouTube URL
Returns:
Video title if successful, None otherwise
"""
try:
title_command = ['yt-dlp', '--get-title', '--no-warnings', url]
video_title = subprocess.check_output(title_command, universal_newlines=True).strip()
return video_title
except subprocess.CalledProcessError as e:
logger.warning(f"Could not retrieve video title: {str(e)}")
return None
def download_audio(url: str, output_file: str) -> Tuple[bool, str]:
"""Download audio from YouTube URL using yt-dlp.
Args:
url: YouTube URL
output_file: Output file path
Returns:
Tuple containing (success, error_message)
"""
command = [
'yt-dlp',
'-f', 'bestaudio',
'--extract-audio',
'--audio-format', 'mp3',
'--audio-quality', '0', # Best quality
'--output', output_file,
'--no-playlist',
'--verbose',
url
]
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
universal_newlines=True
)
stdout, stderr = process.communicate()
if process.returncode != 0:
error_msg = f"Error downloading from YouTube (code {process.returncode}): {stderr}"
return False, error_msg
return True, ""
def handle_download_error(error_msg: str) -> None:
"""Handle common YouTube download errors with helpful messages.
Args:
error_msg: Error message from yt-dlp
"""
logger.error(error_msg)
if "Sign in to confirm you're not a bot" in error_msg:
logger.error("YouTube is detecting automated access. Try using a local file instead.")
elif any(x in error_msg.lower() for x in ["unavailable video", "private video"]):
logger.error("The video appears to be private or unavailable. Please try another URL.")
elif "copyright" in error_msg.lower():
logger.error("The video may be blocked due to copyright restrictions.")
elif any(x in error_msg.lower() for x in ["rate limit", "429"]):
logger.error("YouTube rate limit reached. Please try again later.")
def check_yt_dlp_installation() -> None:
"""Check if yt-dlp is installed and provide guidance if it's not."""
try:
subprocess.run(['yt-dlp', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
except FileNotFoundError:
logger.error("yt-dlp is not installed or not in PATH. Please install it with: pip install yt-dlp")
def strip_silence(audio_path: str) -> None:
"""Remove silent parts from an audio file.
Args:
audio_path: Path to the audio file
"""
try:
sound = AudioSegment.from_file(audio_path)
nonsilent_ranges = detect_nonsilent(
sound, min_silence_len=500, silence_thresh=-50)
if not nonsilent_ranges:
logger.warning("No non-silent parts detected in the audio. Using original file.")
return
stripped = reduce(lambda acc, val: acc + sound[val[0]:val[1]],
nonsilent_ranges, AudioSegment.empty())
stripped.export(audio_path, format='mp3')
except Exception as e:
logger.error(f"Error stripping silence: {e}")
logger.info("Proceeding with original audio file")
class AudioFeature:
"""Class for extracting and processing audio features."""
def __init__(self, audio_path: str, sr: int = SR, hop_length: int = HOP_LENGTH):
"""Initialize the AudioFeature class.
Args:
audio_path: Path to the audio file
sr: Sample rate for audio processing
hop_length: Hop length for feature extraction
"""
self.audio_path: str = audio_path
self.sr: int = sr
self.hop_length: int = hop_length
self.time_signature: int = 4
# Initialize all features as None
self.y: Optional[np.ndarray] = None
self.y_harm: Optional[np.ndarray] = None
self.y_perc: Optional[np.ndarray] = None
self.beats: Optional[np.ndarray] = None
self.chroma_acts: Optional[np.ndarray] = None
self.chromagram: Optional[np.ndarray] = None
self.combined_features: Optional[np.ndarray] = None
self.key: Optional[str] = None
self.mode: Optional[str] = None
self.mel_acts: Optional[np.ndarray] = None
self.melspectrogram: Optional[np.ndarray] = None
self.meter_grid: Optional[np.ndarray] = None
self.mfccs: Optional[np.ndarray] = None
self.mfcc_acts: Optional[np.ndarray] = None
self.n_frames: Optional[int] = None
self.onset_env: Optional[np.ndarray] = None
self.rms: Optional[np.ndarray] = None
self.spectrogram: Optional[np.ndarray] = None
self.tempo: Optional[float] = None
self.tempogram: Optional[np.ndarray] = None
self.tempogram_acts: Optional[np.ndarray] = None
def detect_key(self, chroma_vals: np.ndarray) -> Tuple[str, str]:
"""Detect the key and mode (major or minor) of the audio segment.
Args:
chroma_vals: Chromagram values to analyze for key detection
Returns:
Tuple containing the detected key and mode
"""
note_names = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
# Key profiles (Krumhansl-Kessler profiles)
major_profile = np.array([6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29, 2.88])
minor_profile = np.array([6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69, 3.34, 3.17])
# Normalize profiles
major_profile /= np.linalg.norm(major_profile)
minor_profile /= np.linalg.norm(minor_profile)
# Calculate correlations for all possible rotations
major_correlations = [np.corrcoef(chroma_vals, np.roll(major_profile, i))[0, 1] for i in range(12)]
minor_correlations = [np.corrcoef(chroma_vals, np.roll(minor_profile, i))[0, 1] for i in range(12)]
# Find max correlation
max_major_idx = np.argmax(major_correlations)
max_minor_idx = np.argmax(minor_correlations)
# Determine mode
self.mode = 'major' if major_correlations[max_major_idx] > minor_correlations[max_minor_idx] else 'minor'
self.key = note_names[max_major_idx if self.mode == 'major' else max_minor_idx]
return self.key, self.mode
def calculate_ki_chroma(self, waveform: np.ndarray, sr: int, hop_length: int) -> np.ndarray:
"""Calculate a normalized, key-invariant chromagram for the given audio waveform.
Args:
waveform: Audio waveform to analyze
sr: Sample rate of the waveform
hop_length: Hop length for feature extraction
Returns:
The key-invariant chromagram as a numpy array
"""
# Calculate chromagram
chromagram = librosa.feature.chroma_cqt(
y=waveform, sr=sr, hop_length=hop_length, bins_per_octave=24)
# Normalize to [0, 1]
chromagram = (chromagram - chromagram.min()) / (chromagram.max() - chromagram.min() + 1e-8)
# Detect key
chroma_vals = np.sum(chromagram, axis=1)
key, mode = self.detect_key(chroma_vals)
# Make key-invariant
key_idx = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'].index(key)
shift_amount = -key_idx if mode == 'major' else -(key_idx + 3) % 12
return librosa.util.normalize(np.roll(chromagram, shift_amount, axis=0), axis=1)
def extract_features(self) -> None:
"""Extract various audio features from the loaded audio."""
# Load audio
self.y, self.sr = librosa.load(self.audio_path, sr=self.sr)
# Harmonic-percussive source separation
self.y_harm, self.y_perc = librosa.effects.hpss(self.y)
# Extract spectrogram
self.spectrogram, _ = librosa.magphase(librosa.stft(self.y, hop_length=self.hop_length))
# RMS energy
self.rms = librosa.feature.rms(S=self.spectrogram, hop_length=self.hop_length).astype(np.float32)
# Mel spectrogram and activations
self.melspectrogram = librosa.feature.melspectrogram(
y=self.y, sr=self.sr, n_mels=128, hop_length=self.hop_length).astype(np.float32)
self.mel_acts = librosa.decompose.decompose(self.melspectrogram, n_components=3, sort=True)[1].astype(np.float32)
# Chromagram and activations
self.chromagram = self.calculate_ki_chroma(self.y_harm, self.sr, self.hop_length).astype(np.float32)
self.chroma_acts = librosa.decompose.decompose(self.chromagram, n_components=4, sort=True)[1].astype(np.float32)
# Onset detection and tempogram
self.onset_env = librosa.onset.onset_strength(y=self.y_perc, sr=self.sr, hop_length=self.hop_length)
self.tempogram = np.clip(librosa.feature.tempogram(
onset_envelope=self.onset_env, sr=self.sr, hop_length=self.hop_length), 0, None)
self.tempogram_acts = librosa.decompose.decompose(self.tempogram, n_components=3, sort=True)[1]
# MFCCs and activations
self.mfccs = librosa.feature.mfcc(y=self.y, sr=self.sr, n_mfcc=20, hop_length=self.hop_length)
self.mfccs += abs(np.min(self.mfccs) or 0) # Handle negative values
self.mfcc_acts = librosa.decompose.decompose(self.mfccs, n_components=4, sort=True)[1].astype(np.float32)
# Combine features with weighted normalization
self._combine_features()
def _combine_features(self) -> None:
"""Combine all extracted features with balanced weights."""
features = [self.rms, self.mel_acts, self.chroma_acts, self.tempogram_acts, self.mfcc_acts]
feature_names = ['rms', 'mel_acts', 'chroma_acts', 'tempogram_acts', 'mfcc_acts']
# Calculate dimension-based weights
dims = {name: feature.shape[0] for feature, name in zip(features, feature_names)}
total_inv_dim = sum(1 / dim for dim in dims.values())
weights = {name: 1 / (dims[name] * total_inv_dim) for name in feature_names}
# Normalize and weight each feature
std_weighted_features = [
StandardScaler().fit_transform(feature.T).T * weights[name]
for feature, name in zip(features, feature_names)
]
# Combine features
self.combined_features = np.concatenate(std_weighted_features, axis=0).T.astype(np.float32)
self.n_frames = len(self.combined_features)
def create_meter_grid(self) -> np.ndarray:
"""Create a grid based on the meter of the song using tempo and beats.
Returns:
Numpy array containing the meter grid frame positions
"""
# Extract tempo and beat information
self.tempo, self.beats = librosa.beat.beat_track(
onset_envelope=self.onset_env, sr=self.sr, hop_length=self.hop_length)
# Adjust tempo if it's too slow or too fast
self.tempo = self._adjust_tempo(self.tempo)
# Create meter grid
self.meter_grid = self._create_meter_grid()
return self.meter_grid
def _adjust_tempo(self, tempo: float) -> float:
"""Adjust tempo to a reasonable range.
Args:
tempo: Detected tempo
Returns:
Adjusted tempo
"""
if tempo < 70:
return tempo * 2
elif tempo > 140:
return tempo / 2
return tempo
def _create_meter_grid(self) -> np.ndarray:
"""Helper function to create a meter grid for the song.
Returns:
Numpy array containing the meter grid frame positions
"""
# Calculate beat interval
seconds_per_beat = 60 / self.tempo
beat_interval = int(librosa.time_to_frames(seconds_per_beat, sr=self.sr, hop_length=self.hop_length))
# Find best matching start beat
if len(self.beats) >= 3:
best_match = max(
(1 - abs(np.mean(self.beats[i:i+3]) - beat_interval) / beat_interval, self.beats[i])
for i in range(len(self.beats) - 2)
)
anchor_frame = best_match[1] if best_match[0] > 0.95 else self.beats[0]
else:
anchor_frame = self.beats[0] if len(self.beats) > 0 else 0
first_beat_time = librosa.frames_to_time(anchor_frame, sr=self.sr, hop_length=self.hop_length)
# Calculate beats forward and backward
time_duration = librosa.frames_to_time(self.n_frames, sr=self.sr, hop_length=self.hop_length)
num_beats_forward = int((time_duration - first_beat_time) / seconds_per_beat)
num_beats_backward = int(first_beat_time / seconds_per_beat) + 1
# Create beat times
beat_times_forward = first_beat_time + np.arange(num_beats_forward) * seconds_per_beat
beat_times_backward = first_beat_time - np.arange(1, num_beats_backward) * seconds_per_beat
# Combine and create meter grid
beat_grid = np.concatenate((np.array([0.0]), beat_times_backward[::-1], beat_times_forward))
meter_indices = np.arange(0, len(beat_grid), self.time_signature)
meter_grid = beat_grid[meter_indices]
# Ensure grid starts at 0 and ends at frame duration
if meter_grid[0] != 0.0:
meter_grid = np.insert(meter_grid, 0, 0.0)
# Convert to frames
meter_grid = librosa.time_to_frames(meter_grid, sr=self.sr, hop_length=self.hop_length)
# Ensure grid ends at the last frame
if meter_grid[-1] != self.n_frames:
meter_grid = np.append(meter_grid, self.n_frames)
return meter_grid |