#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Module for audio feature extraction and processing.""" import os import subprocess import time from functools import reduce from pathlib import Path from typing import List, Tuple, Optional, Dict, Any, Union import librosa import numpy as np from pydub import AudioSegment from pydub.silence import detect_nonsilent from sklearn.preprocessing import StandardScaler from chorus_detection.config import SR, HOP_LENGTH, AUDIO_TEMP_PATH from chorus_detection.utils.logging import logger def extract_audio(url: str, output_path: str = str(AUDIO_TEMP_PATH)) -> Tuple[Optional[str], Optional[str]]: """Download audio from YouTube URL and save as MP3 using yt-dlp. Args: url: YouTube URL of the audio file output_path: Path to save the downloaded audio file Returns: Tuple containing path to the downloaded audio file and the video title, or None if download fails """ try: # Create output directory if it doesn't exist os.makedirs(output_path, exist_ok=True) # Create a unique filename using timestamp timestamp = int(time.time()) output_file = os.path.join(output_path, f"audio_{timestamp}.mp3") # Get the video title first video_title = get_video_title(url) or f"Video_{timestamp}" # Download the audio success, error_msg = download_audio(url, output_file) if not success: handle_download_error(error_msg) return None, None # Check if file exists and is valid if os.path.exists(output_file) and os.path.getsize(output_file) > 0: logger.info(f"Successfully downloaded: {video_title}") return output_file, video_title else: logger.error("Download completed but file not found or empty") return None, None except Exception as e: import traceback error_details = traceback.format_exc() logger.error(f"An error occurred during YouTube download: {e}") logger.debug(f"Error details: {error_details}") check_yt_dlp_installation() return None, None def get_video_title(url: str) -> Optional[str]: """Get the title of a YouTube video. Args: url: YouTube URL Returns: Video title if successful, None otherwise """ try: title_command = ['yt-dlp', '--get-title', '--no-warnings', url] video_title = subprocess.check_output(title_command, universal_newlines=True).strip() return video_title except subprocess.CalledProcessError as e: logger.warning(f"Could not retrieve video title: {str(e)}") return None def download_audio(url: str, output_file: str) -> Tuple[bool, str]: """Download audio from YouTube URL using yt-dlp. Args: url: YouTube URL output_file: Output file path Returns: Tuple containing (success, error_message) """ command = [ 'yt-dlp', '-f', 'bestaudio', '--extract-audio', '--audio-format', 'mp3', '--audio-quality', '0', # Best quality '--output', output_file, '--no-playlist', '--verbose', url ] process = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True ) stdout, stderr = process.communicate() if process.returncode != 0: error_msg = f"Error downloading from YouTube (code {process.returncode}): {stderr}" return False, error_msg return True, "" def handle_download_error(error_msg: str) -> None: """Handle common YouTube download errors with helpful messages. Args: error_msg: Error message from yt-dlp """ logger.error(error_msg) if "Sign in to confirm you're not a bot" in error_msg: logger.error("YouTube is detecting automated access. Try using a local file instead.") elif any(x in error_msg.lower() for x in ["unavailable video", "private video"]): logger.error("The video appears to be private or unavailable. Please try another URL.") elif "copyright" in error_msg.lower(): logger.error("The video may be blocked due to copyright restrictions.") elif any(x in error_msg.lower() for x in ["rate limit", "429"]): logger.error("YouTube rate limit reached. Please try again later.") def check_yt_dlp_installation() -> None: """Check if yt-dlp is installed and provide guidance if it's not.""" try: subprocess.run(['yt-dlp', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) except FileNotFoundError: logger.error("yt-dlp is not installed or not in PATH. Please install it with: pip install yt-dlp") def strip_silence(audio_path: str) -> None: """Remove silent parts from an audio file. Args: audio_path: Path to the audio file """ try: sound = AudioSegment.from_file(audio_path) nonsilent_ranges = detect_nonsilent( sound, min_silence_len=500, silence_thresh=-50) if not nonsilent_ranges: logger.warning("No non-silent parts detected in the audio. Using original file.") return stripped = reduce(lambda acc, val: acc + sound[val[0]:val[1]], nonsilent_ranges, AudioSegment.empty()) stripped.export(audio_path, format='mp3') except Exception as e: logger.error(f"Error stripping silence: {e}") logger.info("Proceeding with original audio file") class AudioFeature: """Class for extracting and processing audio features.""" def __init__(self, audio_path: str, sr: int = SR, hop_length: int = HOP_LENGTH): """Initialize the AudioFeature class. Args: audio_path: Path to the audio file sr: Sample rate for audio processing hop_length: Hop length for feature extraction """ self.audio_path: str = audio_path self.sr: int = sr self.hop_length: int = hop_length self.time_signature: int = 4 # Initialize all features as None self.y: Optional[np.ndarray] = None self.y_harm: Optional[np.ndarray] = None self.y_perc: Optional[np.ndarray] = None self.beats: Optional[np.ndarray] = None self.chroma_acts: Optional[np.ndarray] = None self.chromagram: Optional[np.ndarray] = None self.combined_features: Optional[np.ndarray] = None self.key: Optional[str] = None self.mode: Optional[str] = None self.mel_acts: Optional[np.ndarray] = None self.melspectrogram: Optional[np.ndarray] = None self.meter_grid: Optional[np.ndarray] = None self.mfccs: Optional[np.ndarray] = None self.mfcc_acts: Optional[np.ndarray] = None self.n_frames: Optional[int] = None self.onset_env: Optional[np.ndarray] = None self.rms: Optional[np.ndarray] = None self.spectrogram: Optional[np.ndarray] = None self.tempo: Optional[float] = None self.tempogram: Optional[np.ndarray] = None self.tempogram_acts: Optional[np.ndarray] = None def detect_key(self, chroma_vals: np.ndarray) -> Tuple[str, str]: """Detect the key and mode (major or minor) of the audio segment. Args: chroma_vals: Chromagram values to analyze for key detection Returns: Tuple containing the detected key and mode """ note_names = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'] # Key profiles (Krumhansl-Kessler profiles) major_profile = np.array([6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29, 2.88]) minor_profile = np.array([6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69, 3.34, 3.17]) # Normalize profiles major_profile /= np.linalg.norm(major_profile) minor_profile /= np.linalg.norm(minor_profile) # Calculate correlations for all possible rotations major_correlations = [np.corrcoef(chroma_vals, np.roll(major_profile, i))[0, 1] for i in range(12)] minor_correlations = [np.corrcoef(chroma_vals, np.roll(minor_profile, i))[0, 1] for i in range(12)] # Find max correlation max_major_idx = np.argmax(major_correlations) max_minor_idx = np.argmax(minor_correlations) # Determine mode self.mode = 'major' if major_correlations[max_major_idx] > minor_correlations[max_minor_idx] else 'minor' self.key = note_names[max_major_idx if self.mode == 'major' else max_minor_idx] return self.key, self.mode def calculate_ki_chroma(self, waveform: np.ndarray, sr: int, hop_length: int) -> np.ndarray: """Calculate a normalized, key-invariant chromagram for the given audio waveform. Args: waveform: Audio waveform to analyze sr: Sample rate of the waveform hop_length: Hop length for feature extraction Returns: The key-invariant chromagram as a numpy array """ # Calculate chromagram chromagram = librosa.feature.chroma_cqt( y=waveform, sr=sr, hop_length=hop_length, bins_per_octave=24) # Normalize to [0, 1] chromagram = (chromagram - chromagram.min()) / (chromagram.max() - chromagram.min() + 1e-8) # Detect key chroma_vals = np.sum(chromagram, axis=1) key, mode = self.detect_key(chroma_vals) # Make key-invariant key_idx = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'].index(key) shift_amount = -key_idx if mode == 'major' else -(key_idx + 3) % 12 return librosa.util.normalize(np.roll(chromagram, shift_amount, axis=0), axis=1) def extract_features(self) -> None: """Extract various audio features from the loaded audio.""" # Load audio self.y, self.sr = librosa.load(self.audio_path, sr=self.sr) # Harmonic-percussive source separation self.y_harm, self.y_perc = librosa.effects.hpss(self.y) # Extract spectrogram self.spectrogram, _ = librosa.magphase(librosa.stft(self.y, hop_length=self.hop_length)) # RMS energy self.rms = librosa.feature.rms(S=self.spectrogram, hop_length=self.hop_length).astype(np.float32) # Mel spectrogram and activations self.melspectrogram = librosa.feature.melspectrogram( y=self.y, sr=self.sr, n_mels=128, hop_length=self.hop_length).astype(np.float32) self.mel_acts = librosa.decompose.decompose(self.melspectrogram, n_components=3, sort=True)[1].astype(np.float32) # Chromagram and activations self.chromagram = self.calculate_ki_chroma(self.y_harm, self.sr, self.hop_length).astype(np.float32) self.chroma_acts = librosa.decompose.decompose(self.chromagram, n_components=4, sort=True)[1].astype(np.float32) # Onset detection and tempogram self.onset_env = librosa.onset.onset_strength(y=self.y_perc, sr=self.sr, hop_length=self.hop_length) self.tempogram = np.clip(librosa.feature.tempogram( onset_envelope=self.onset_env, sr=self.sr, hop_length=self.hop_length), 0, None) self.tempogram_acts = librosa.decompose.decompose(self.tempogram, n_components=3, sort=True)[1] # MFCCs and activations self.mfccs = librosa.feature.mfcc(y=self.y, sr=self.sr, n_mfcc=20, hop_length=self.hop_length) self.mfccs += abs(np.min(self.mfccs) or 0) # Handle negative values self.mfcc_acts = librosa.decompose.decompose(self.mfccs, n_components=4, sort=True)[1].astype(np.float32) # Combine features with weighted normalization self._combine_features() def _combine_features(self) -> None: """Combine all extracted features with balanced weights.""" features = [self.rms, self.mel_acts, self.chroma_acts, self.tempogram_acts, self.mfcc_acts] feature_names = ['rms', 'mel_acts', 'chroma_acts', 'tempogram_acts', 'mfcc_acts'] # Calculate dimension-based weights dims = {name: feature.shape[0] for feature, name in zip(features, feature_names)} total_inv_dim = sum(1 / dim for dim in dims.values()) weights = {name: 1 / (dims[name] * total_inv_dim) for name in feature_names} # Normalize and weight each feature std_weighted_features = [ StandardScaler().fit_transform(feature.T).T * weights[name] for feature, name in zip(features, feature_names) ] # Combine features self.combined_features = np.concatenate(std_weighted_features, axis=0).T.astype(np.float32) self.n_frames = len(self.combined_features) def create_meter_grid(self) -> np.ndarray: """Create a grid based on the meter of the song using tempo and beats. Returns: Numpy array containing the meter grid frame positions """ # Extract tempo and beat information self.tempo, self.beats = librosa.beat.beat_track( onset_envelope=self.onset_env, sr=self.sr, hop_length=self.hop_length) # Adjust tempo if it's too slow or too fast self.tempo = self._adjust_tempo(self.tempo) # Create meter grid self.meter_grid = self._create_meter_grid() return self.meter_grid def _adjust_tempo(self, tempo: float) -> float: """Adjust tempo to a reasonable range. Args: tempo: Detected tempo Returns: Adjusted tempo """ if tempo < 70: return tempo * 2 elif tempo > 140: return tempo / 2 return tempo def _create_meter_grid(self) -> np.ndarray: """Helper function to create a meter grid for the song. Returns: Numpy array containing the meter grid frame positions """ # Calculate beat interval seconds_per_beat = 60 / self.tempo beat_interval = int(librosa.time_to_frames(seconds_per_beat, sr=self.sr, hop_length=self.hop_length)) # Find best matching start beat if len(self.beats) >= 3: best_match = max( (1 - abs(np.mean(self.beats[i:i+3]) - beat_interval) / beat_interval, self.beats[i]) for i in range(len(self.beats) - 2) ) anchor_frame = best_match[1] if best_match[0] > 0.95 else self.beats[0] else: anchor_frame = self.beats[0] if len(self.beats) > 0 else 0 first_beat_time = librosa.frames_to_time(anchor_frame, sr=self.sr, hop_length=self.hop_length) # Calculate beats forward and backward time_duration = librosa.frames_to_time(self.n_frames, sr=self.sr, hop_length=self.hop_length) num_beats_forward = int((time_duration - first_beat_time) / seconds_per_beat) num_beats_backward = int(first_beat_time / seconds_per_beat) + 1 # Create beat times beat_times_forward = first_beat_time + np.arange(num_beats_forward) * seconds_per_beat beat_times_backward = first_beat_time - np.arange(1, num_beats_backward) * seconds_per_beat # Combine and create meter grid beat_grid = np.concatenate((np.array([0.0]), beat_times_backward[::-1], beat_times_forward)) meter_indices = np.arange(0, len(beat_grid), self.time_signature) meter_grid = beat_grid[meter_indices] # Ensure grid starts at 0 and ends at frame duration if meter_grid[0] != 0.0: meter_grid = np.insert(meter_grid, 0, 0.0) # Convert to frames meter_grid = librosa.time_to_frames(meter_grid, sr=self.sr, hop_length=self.hop_length) # Ensure grid ends at the last frame if meter_grid[-1] != self.n_frames: meter_grid = np.append(meter_grid, self.n_frames) return meter_grid