File size: 1,188 Bytes
a602c25
dbd9204
a602c25
dbd9204
a602c25
f80d34c
b8f7f6f
 
a602c25
78cc221
 
 
a602c25
78cc221
 
a602c25
78cc221
 
 
 
 
 
 
91f14e5
 
78cc221
 
b8f7f6f
78cc221
91f14e5
a602c25
91f14e5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import transformers
import gradio as gr
import torch

from transformers import GPT2LMHeadModel, GPT2Tokenizer

tokenizer = GPT2Tokenizer.from_pretrained('microsoft/DialoGPT-small')
model = GPT2LMHeadModel.from_pretrained('microsoft/DialoGPT-small')

def predict(input, history=[]):
    # tokenize the new input sentence
    new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')

    # append the new user input tokens to the chat history
    bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)

    # generate a response 
    history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()

    # convert the tokens to text, and then split the responses into lines
    response = tokenizer.decode(history[0]).split("<|endoftext|>")
    response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]  # convert to tuples of list
    return response, history
    


gr.Interface(fn=predict,
    title="DialoGPT-small",
    inputs=["text", "state"],
    outputs=["chatbot", "state"],
    allow_screenshot=False,
    allow_flagging='never').launch()