Spaces:
Build error
Build error
File size: 1,188 Bytes
a602c25 dbd9204 a602c25 dbd9204 a602c25 f80d34c b8f7f6f a602c25 78cc221 a602c25 78cc221 a602c25 78cc221 91f14e5 78cc221 b8f7f6f 78cc221 91f14e5 a602c25 91f14e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import transformers
import gradio as gr
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained('microsoft/DialoGPT-small')
model = GPT2LMHeadModel.from_pretrained('microsoft/DialoGPT-small')
def predict(input, history=[]):
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
# convert the tokens to text, and then split the responses into lines
response = tokenizer.decode(history[0]).split("<|endoftext|>")
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
return response, history
gr.Interface(fn=predict,
title="DialoGPT-small",
inputs=["text", "state"],
outputs=["chatbot", "state"],
allow_screenshot=False,
allow_flagging='never').launch()
|