File size: 3,633 Bytes
26c4e1e
 
 
 
 
 
 
 
 
08070f7
26c4e1e
 
 
 
 
e5c67fa
 
 
 
26c4e1e
 
 
 
 
 
 
 
 
 
 
 
efdde20
26c4e1e
 
7d6c290
 
26c4e1e
 
7d6c290
26c4e1e
 
 
 
 
 
 
 
 
e5c67fa
 
 
cf9b03b
e5c67fa
 
 
 
 
 
 
 
 
26c4e1e
 
 
 
 
 
 
 
e5c67fa
 
26c4e1e
 
 
bdd3a1a
26c4e1e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import pickle
import pandas as pd
import shap
from shap.plots._force_matplotlib import draw_additive_plot
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt

# load the model from disk
loaded_model = pickle.load(open("heart_xgb.pkl", 'rb'))

# Setup SHAP
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.

# Create the main function for server
def main_func(age, sex, cp, trtbps, chol, fbs, restecg, thalachh, exng, oldpeak, slp, caa, thall):
    new_row = pd.DataFrame.from_dict({'age':age,'sex':sex,
              'cp':cp,'trtbps':trtbps,'chol':chol,
              'fbs':fbs, 'restecg':restecg, 'thalachh':thalachh, 'exng':exng, 'oldpeak':oldpeak, 'slp':slp, 'caa':caa, 'thall':thall}, orient = 'index').transpose()
    
    prob = loaded_model.predict_proba(new_row)
    
    shap_values = explainer(new_row)
    # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False)
    # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False)
    plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False)

    plt.tight_layout()
    local_plot = plt.gcf()
    plt.close()
    
    return {"High Chance": float(prob[0][0]), "Low Chance": 1-float(prob[0][0])}, local_plot

# Create the UI
title = "**Heart Attack Predictor & Interpreter** 🪐"
description1 = """This app takes infor from subjects and predicts their heart attack likelihood. Do not use for medical diagnosis."""

description2 = """
To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. 🤞
""" 

with gr.Blocks(title=title) as demo:
    gr.Markdown(f"## {title}")
#    gr.Markdown("""![marketing](file/marketing.jpg)""")
    gr.Markdown(description1)
    gr.Markdown("""---""")
    gr.Markdown(description2)
    gr.Markdown("""---""")
    age = gr.Slider(label="age Score", minimum=15, maximum=90, value=40, step=5)
    sex = gr.Slider(label="sex Score", minimum=0, maximum=1, value=1, step=1)
    cp = gr.Slider(label="cp Score", minimum=1, maximum=5, value=4, step=1)
    trtbps = gr.Slider(label="trtbps Score", minimum=1, maximum=5, value=4, step=1)
    chol = gr.Slider(label="chol Score", minimum=1, maximum=5, value=4, step=1)
    fbs = gr.Slider(label="fbs Score", minimum=1, maximum=5, value=4, step=1)
    restecg = gr.Slider(label="restecg Score", minimum=1, maximum=5, value=4, step=1)
    thalachh = gr.Slider(label="thalachh Score", minimum=1, maximum=5, value=4, step=1)
    exng = gr.Slider(label="exng Score", minimum=1, maximum=5, value=4, step=1)
    oldpeak = gr.Slider(label="oldpeak Score", minimum=1, maximum=5, value=4, step=1)
    slp = gr.Slider(label="slp Score", minimum=1, maximum=5, value=4, step=1)
    caa = gr.Slider(label="caa Score", minimum=1, maximum=5, value=4, step=1)
    thall = gr.Slider(label="thall Score", minimum=1, maximum=5, value=4, step=1)
    submit_btn = gr.Button("Analyze")

    with gr.Column(visible=True) as output_col:
        label = gr.Label(label = "Predicted Label")
        local_plot = gr.Plot(label = 'Shap:')

    submit_btn.click(
        main_func,
        [age, sex, cp, trtbps, chol, fbs, restecg, thalachh, exng, oldpeak, slp, caa, thall],
        [label,local_plot], api_name="Heart_Predictor"
    )
    
    gr.Markdown("### Click on any of the examples below to see how it works:")
    gr.Examples([[4,0,3,5,6,8,4,4,4,4,5,5,6], [5,2,3,4,2,3,3,4,2,4,5,4,4,4]], [age, sex, cp, trtbps, chol, fbs, restecg, thalachh, exng, oldpeak, slp, caa, thall], [label,local_plot], main_func, cache_examples=True)

demo.launch()