Spaces:
Runtime error
Runtime error
File size: 4,835 Bytes
207077e df8bdb6 207077e aefc329 207077e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import gradio as gr
import numpy as np
import os
import requests
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
from sentence_transformers import SentenceTransformer
from typing import List
NER_MODEL_PATH = 'dell-research-harvard/historical_newspaper_ner'
EMBED_MODEL_PATH = 'dell-research-harvard/same-story'
AZURE_VM_ALABAMA = os.environ.get('AZURE_VM_ALABAMA')
def find_sep_token(tokenizer):
"""
Returns sep token for given tokenizer
"""
if 'eos_token' in tokenizer.special_tokens_map:
sep = " " + tokenizer.special_tokens_map['eos_token'] + " " + tokenizer.special_tokens_map['sep_token'] + " "
else:
sep = " " + tokenizer.special_tokens_map['sep_token'] + " "
return sep
def find_mask_token(tokenizer):
"""
Returns mask token for given tokenizer
"""
mask_tok = tokenizer.special_tokens_map['mask_token']
return mask_tok
if gr.NO_RELOAD:
ner_model=AutoModelForTokenClassification.from_pretrained(NER_MODEL_PATH)
ner_tokenizer=AutoTokenizer.from_pretrained(NER_MODEL_PATH, return_tensors = "pt",
max_length=256, truncation = True)
token_classifier = pipeline(task = "ner",
model = ner_model, tokenizer = ner_tokenizer,
ignore_labels = [], aggregation_strategy='max')
embedding_tokenizer = AutoTokenizer.from_pretrained(EMBED_MODEL_PATH)
embedding_model = SentenceTransformer(EMBED_MODEL_PATH)
embed_mask_tok = find_mask_token(embedding_tokenizer)
embed_sep_tok = find_sep_token(embedding_tokenizer)
# with open(REF_INDEX_PATH, 'r') as f:
# news_paths = [l.strip() for l in f.readlines()]
def handle_punctuation_for_generic_mask(word):
"""If punctuation comes before the word, return it before the mask, ow return it after the mask"""
if word[0] in [".",",","!","?"]:
return word[0] + " [MASK]"
elif word[-1] in [".",",","!","?"]:
return "[MASK]" + word[-1]
else:
return "[MASK]"
def handle_punctuation_for_entity_mask(word,entity_group):
"""If punctuation comes before the word, return it before the mask, ow return it after the mask - this is for specific entity masks"""
if word[0] in [".",",","!","?"]:
return word[0]+" "+entity_group
elif word[-1] in [".",",","!","?"]:
return entity_group+word[-1]
else:
return entity_group
def replace_words_with_entity_tokens(ner_output_dict: List[dict],
desired_labels: List[str] = ['PER', 'ORG', 'LOC', 'MISC'],
all_masks_same: bool = True) -> str:
if not all_masks_same:
new_word_list=[subdict["word"] if subdict["entity_group"] not in desired_labels else handle_punctuation_for_entity_mask(subdict["word"],subdict["entity_group"]) for subdict in ner_output_dict]
else:
new_word_list=[subdict["word"] if subdict["entity_group"] not in desired_labels else handle_punctuation_for_generic_mask(subdict["word"]) for subdict in ner_output_dict]
return " ".join(new_word_list)
def mask(ner_output_list: List[List[dict]], desired_labels: List[str] = ['PER', 'ORG', 'LOC', 'MISC'],
all_masks_same: bool = True) -> List[str]:
return replace_words_with_entity_tokens(ner_output_list, desired_labels, all_masks_same)
def ner(text: List[str]) -> List[str]:
results = token_classifier(text)
return results[0]
def ner_and_mask(text: List[str], labels_to_mask: List[str] = ['PER', 'ORG', 'LOC', 'MISC'], all_masks_same: bool = True) -> List[str]:
ner_output_list = ner(text)
return mask(ner_output_list, labels_to_mask, all_masks_same)
def embed(text: str) -> List[str]:
data = []
# Correct [MASK] token for tokenizer
text = text.replace('[MASK]', embed_mask_tok)
text = text.replace('[SEP]', embed_sep_tok)
data.append(text)
embedding = embedding_model.encode(data, show_progress_bar = False, batch_size = 1)
embedding = embedding / np.linalg.norm(embedding, axis = 1, keepdims = True)
return embedding
def query(sentence: str) -> List[str]:
mask_results = ner_and_mask([sentence])
embedding = embed(mask_results)
assert embedding.shape == (1, 768)
embedding = embedding[0].astype(np.float64)
req = {"vector": list(embedding), 'nn': 5}
# Send embedding to Azure VM
response = requests.post(f"http://{AZURE_VM_ALABAMA}/retrieve", json = req)
doc = response.json()
article = doc['bboxes'][doc['article_id']]
return article['raw_text']
if __name__ == "__main__":
demo = gr.Interface(
fn=query,
inputs=["text"],
outputs=["text"],
)
demo.launch() |