deepugaur's picture
Create app.py
955a196 verified
import streamlit as st
import tensorflow as tf
from tensorflow.keras.preprocessing.sequence import pad_sequences
import pickle
# Load the trained model and tokenizer
model = tf.keras.models.load_model("deep_learning_model.h5")
with open("tokenizer.pkl", "rb") as handle:
tokenizer = pickle.load(handle)
# Input parameters
max_length = 100
# Streamlit UI
st.title("Prompt Injection Detection")
st.write("Enter a prompt to check whether it is malicious or valid:")
user_input = st.text_area("Input Text", placeholder="Type your input here...")
if st.button("Analyze"):
if user_input.strip() == "":
st.error("Please enter some text to analyze.")
else:
# Preprocess user input
input_seq = tokenizer.texts_to_sequences([user_input])
input_pad = pad_sequences(input_seq, maxlen=max_length)
# Predict
prediction = model.predict(input_pad)[0][0]
if prediction >= 0.5:
st.error("🚨 The input is classified as *Malicious*.")
else:
st.success("βœ… The input is classified as *Valid*.")