deepugaur commited on
Commit
955a196
·
verified ·
1 Parent(s): 5650379

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -0
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+ import streamlit as st
5
+ import tensorflow as tf
6
+ from tensorflow.keras.preprocessing.sequence import pad_sequences
7
+ import pickle
8
+
9
+ # Load the trained model and tokenizer
10
+ model = tf.keras.models.load_model("deep_learning_model.h5")
11
+
12
+ with open("tokenizer.pkl", "rb") as handle:
13
+ tokenizer = pickle.load(handle)
14
+
15
+ # Input parameters
16
+ max_length = 100
17
+
18
+ # Streamlit UI
19
+ st.title("Prompt Injection Detection")
20
+ st.write("Enter a prompt to check whether it is malicious or valid:")
21
+
22
+ user_input = st.text_area("Input Text", placeholder="Type your input here...")
23
+
24
+ if st.button("Analyze"):
25
+ if user_input.strip() == "":
26
+ st.error("Please enter some text to analyze.")
27
+ else:
28
+ # Preprocess user input
29
+ input_seq = tokenizer.texts_to_sequences([user_input])
30
+ input_pad = pad_sequences(input_seq, maxlen=max_length)
31
+
32
+ # Predict
33
+ prediction = model.predict(input_pad)[0][0]
34
+ if prediction >= 0.5:
35
+ st.error("🚨 The input is classified as *Malicious*.")
36
+ else:
37
+ st.success("✅ The input is classified as *Valid*.")