import streamlit as st import tensorflow as tf from tensorflow.keras.preprocessing.sequence import pad_sequences import pickle # Load the trained model and tokenizer model = tf.keras.models.load_model("deep_learning_model.h5") with open("tokenizer.pkl", "rb") as handle: tokenizer = pickle.load(handle) # Input parameters max_length = 100 # Streamlit UI st.title("Prompt Injection Detection") st.write("Enter a prompt to check whether it is malicious or valid:") user_input = st.text_area("Input Text", placeholder="Type your input here...") if st.button("Analyze"): if user_input.strip() == "": st.error("Please enter some text to analyze.") else: # Preprocess user input input_seq = tokenizer.texts_to_sequences([user_input]) input_pad = pad_sequences(input_seq, maxlen=max_length) # Predict prediction = model.predict(input_pad)[0][0] if prediction >= 0.5: st.error("🚨 The input is classified as *Malicious*.") else: st.success("✅ The input is classified as *Valid*.")