File size: 4,464 Bytes
013f26e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os

from tqdm import tqdm
import torch
import numpy as np
import random
import scipy.io as scio
import sad_talker.src.utils.audio as audio

def crop_pad_audio(wav, audio_length):
    if len(wav) > audio_length:
        wav = wav[:audio_length]
    elif len(wav) < audio_length:
        wav = np.pad(wav, [0, audio_length - len(wav)], mode='constant', constant_values=0)
    return wav

def parse_audio_length(audio_length, sr, fps):
    bit_per_frames = sr / fps

    num_frames = int(audio_length / bit_per_frames)
    audio_length = int(num_frames * bit_per_frames)

    return audio_length, num_frames

def generate_blink_seq(num_frames):
    ratio = np.zeros((num_frames,1))
    frame_id = 0
    while frame_id in range(num_frames):
        start = 80
        if frame_id+start+9<=num_frames - 1:
            ratio[frame_id+start:frame_id+start+9, 0] = [0.5,0.6,0.7,0.9,1, 0.9, 0.7,0.6,0.5]
            frame_id = frame_id+start+9
        else:
            break
    return ratio 

def generate_blink_seq_randomly(num_frames):
    ratio = np.zeros((num_frames,1))
    if num_frames<=20:
        return ratio
    frame_id = 0
    while frame_id in range(num_frames):
        start = random.choice(range(min(10,num_frames), min(int(num_frames/2), 70))) 
        if frame_id+start+5<=num_frames - 1:
            ratio[frame_id+start:frame_id+start+5, 0] = [0.5, 0.9, 1.0, 0.9, 0.5]
            frame_id = frame_id+start+5
        else:
            break
    return ratio

def get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=False, idlemode=False, length_of_audio=False, use_blink=True):

    syncnet_mel_step_size = 16
    fps = 25

    pic_name = os.path.splitext(os.path.split(first_coeff_path)[-1])[0]
    audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0]

    
    if idlemode:
        num_frames = int(length_of_audio * 25)
        indiv_mels = np.zeros((num_frames, 80, 16))
    else:
        wav = audio.load_wav(audio_path, 16000) 
        wav_length, num_frames = parse_audio_length(len(wav), 16000, 25)
        wav = crop_pad_audio(wav, wav_length)
        orig_mel = audio.melspectrogram(wav).T
        spec = orig_mel.copy()         # nframes 80
        indiv_mels = []

        for i in tqdm(range(num_frames), 'mel:'):
            start_frame_num = i-2
            start_idx = int(80. * (start_frame_num / float(fps)))
            end_idx = start_idx + syncnet_mel_step_size
            seq = list(range(start_idx, end_idx))
            seq = [ min(max(item, 0), orig_mel.shape[0]-1) for item in seq ]
            m = spec[seq, :]
            indiv_mels.append(m.T)
        indiv_mels = np.asarray(indiv_mels)         # T 80 16

    ratio = generate_blink_seq_randomly(num_frames)      # T
    source_semantics_path = first_coeff_path
    source_semantics_dict = scio.loadmat(source_semantics_path)
    ref_coeff = source_semantics_dict['coeff_3dmm'][:1,:70]         #1 70
    ref_coeff = np.repeat(ref_coeff, num_frames, axis=0)

    if ref_eyeblink_coeff_path is not None:
        ratio[:num_frames] = 0
        refeyeblink_coeff_dict = scio.loadmat(ref_eyeblink_coeff_path)
        refeyeblink_coeff = refeyeblink_coeff_dict['coeff_3dmm'][:,:64]
        refeyeblink_num_frames = refeyeblink_coeff.shape[0]
        if refeyeblink_num_frames<num_frames:
            div = num_frames//refeyeblink_num_frames
            re = num_frames%refeyeblink_num_frames
            refeyeblink_coeff_list = [refeyeblink_coeff for i in range(div)]
            refeyeblink_coeff_list.append(refeyeblink_coeff[:re, :64])
            refeyeblink_coeff = np.concatenate(refeyeblink_coeff_list, axis=0)
            print(refeyeblink_coeff.shape[0])

        ref_coeff[:, :64] = refeyeblink_coeff[:num_frames, :64] 
    
    indiv_mels = torch.FloatTensor(indiv_mels).unsqueeze(1).unsqueeze(0) # bs T 1 80 16

    if use_blink:
        ratio = torch.FloatTensor(ratio).unsqueeze(0)                       # bs T
    else:
        ratio = torch.FloatTensor(ratio).unsqueeze(0).fill_(0.) 
                               # bs T
    ref_coeff = torch.FloatTensor(ref_coeff).unsqueeze(0)                # bs 1 70

    indiv_mels = indiv_mels.to(device)
    ratio = ratio.to(device)
    ref_coeff = ref_coeff.to(device)

    return {'indiv_mels': indiv_mels,  
            'ref': ref_coeff, 
            'num_frames': num_frames, 
            'ratio_gt': ratio,
            'audio_name': audio_name, 'pic_name': pic_name}