File size: 11,515 Bytes
013f26e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import torch
from torch import nn
import torch.nn.functional as F
from sad_talker.src.facerender.modules.util import ResBlock2d, SameBlock2d, UpBlock2d, DownBlock2d, ResBlock3d, SPADEResnetBlock
from sad_talker.src.facerender.modules.dense_motion import DenseMotionNetwork


class OcclusionAwareGenerator(nn.Module):
    """
    Generator follows NVIDIA architecture.
    """

    def __init__(self, image_channel, feature_channel, num_kp, block_expansion, max_features, num_down_blocks, reshape_channel, reshape_depth,
                 num_resblocks, estimate_occlusion_map=False, dense_motion_params=None, estimate_jacobian=False):
        super(OcclusionAwareGenerator, self).__init__()

        if dense_motion_params is not None:
            self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, feature_channel=feature_channel,
                                                           estimate_occlusion_map=estimate_occlusion_map,
                                                           **dense_motion_params)
        else:
            self.dense_motion_network = None

        self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(7, 7), padding=(3, 3))

        down_blocks = []
        for i in range(num_down_blocks):
            in_features = min(max_features, block_expansion * (2 ** i))
            out_features = min(max_features, block_expansion * (2 ** (i + 1)))
            down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
        self.down_blocks = nn.ModuleList(down_blocks)

        self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1)

        self.reshape_channel = reshape_channel
        self.reshape_depth = reshape_depth

        self.resblocks_3d = torch.nn.Sequential()
        for i in range(num_resblocks):
            self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1))

        out_features = block_expansion * (2 ** (num_down_blocks))
        self.third = SameBlock2d(max_features, out_features, kernel_size=(3, 3), padding=(1, 1), lrelu=True)
        self.fourth = nn.Conv2d(in_channels=out_features, out_channels=out_features, kernel_size=1, stride=1)

        self.resblocks_2d = torch.nn.Sequential()
        for i in range(num_resblocks):
            self.resblocks_2d.add_module('2dr' + str(i), ResBlock2d(out_features, kernel_size=3, padding=1))

        up_blocks = []
        for i in range(num_down_blocks):
            in_features = max(block_expansion, block_expansion * (2 ** (num_down_blocks - i)))
            out_features = max(block_expansion, block_expansion * (2 ** (num_down_blocks - i - 1)))
            up_blocks.append(UpBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
        self.up_blocks = nn.ModuleList(up_blocks)

        self.final = nn.Conv2d(block_expansion, image_channel, kernel_size=(7, 7), padding=(3, 3))
        self.estimate_occlusion_map = estimate_occlusion_map
        self.image_channel = image_channel

    def deform_input(self, inp, deformation):
        _, d_old, h_old, w_old, _ = deformation.shape
        _, _, d, h, w = inp.shape
        if d_old != d or h_old != h or w_old != w:
            deformation = deformation.permute(0, 4, 1, 2, 3)
            deformation = F.interpolate(deformation, size=(d, h, w), mode='trilinear')
            deformation = deformation.permute(0, 2, 3, 4, 1)
        return F.grid_sample(inp, deformation)

    def forward(self, source_image, kp_driving, kp_source):
        # Encoding (downsampling) part
        out = self.first(source_image)
        for i in range(len(self.down_blocks)):
            out = self.down_blocks[i](out)
        out = self.second(out)
        bs, c, h, w = out.shape
        # print(out.shape)
        feature_3d = out.view(bs, self.reshape_channel, self.reshape_depth, h ,w) 
        feature_3d = self.resblocks_3d(feature_3d)

        # Transforming feature representation according to deformation and occlusion
        output_dict = {}
        if self.dense_motion_network is not None:
            dense_motion = self.dense_motion_network(feature=feature_3d, kp_driving=kp_driving,
                                                     kp_source=kp_source)
            output_dict['mask'] = dense_motion['mask']

            if 'occlusion_map' in dense_motion:
                occlusion_map = dense_motion['occlusion_map']
                output_dict['occlusion_map'] = occlusion_map
            else:
                occlusion_map = None
            deformation = dense_motion['deformation']
            out = self.deform_input(feature_3d, deformation)

            bs, c, d, h, w = out.shape
            out = out.view(bs, c*d, h, w)
            out = self.third(out)
            out = self.fourth(out)

            if occlusion_map is not None:
                if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]:
                    occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear')
                out = out * occlusion_map

            # output_dict["deformed"] = self.deform_input(source_image, deformation)  # 3d deformation cannot deform 2d image

        # Decoding part
        out = self.resblocks_2d(out)
        for i in range(len(self.up_blocks)):
            out = self.up_blocks[i](out)
        out = self.final(out)
        out = F.sigmoid(out)

        output_dict["prediction"] = out

        return output_dict


class SPADEDecoder(nn.Module):
    def __init__(self):
        super().__init__()
        ic = 256
        oc = 64
        norm_G = 'spadespectralinstance'
        label_nc = 256
        
        self.fc = nn.Conv2d(ic, 2 * ic, 3, padding=1)
        self.G_middle_0 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
        self.G_middle_1 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
        self.G_middle_2 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
        self.G_middle_3 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
        self.G_middle_4 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
        self.G_middle_5 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
        self.up_0 = SPADEResnetBlock(2 * ic, ic, norm_G, label_nc)
        self.up_1 = SPADEResnetBlock(ic, oc, norm_G, label_nc)
        self.conv_img = nn.Conv2d(oc, 3, 3, padding=1)
        self.up = nn.Upsample(scale_factor=2)
        
    def forward(self, feature):
        seg = feature
        x = self.fc(feature)
        x = self.G_middle_0(x, seg)
        x = self.G_middle_1(x, seg)
        x = self.G_middle_2(x, seg)
        x = self.G_middle_3(x, seg)
        x = self.G_middle_4(x, seg)
        x = self.G_middle_5(x, seg)
        x = self.up(x)                
        x = self.up_0(x, seg)         # 256, 128, 128
        x = self.up(x)                
        x = self.up_1(x, seg)         # 64, 256, 256

        x = self.conv_img(F.leaky_relu(x, 2e-1))
        # x = torch.tanh(x)
        x = F.sigmoid(x)
        
        return x


class OcclusionAwareSPADEGenerator(nn.Module):

    def __init__(self, image_channel, feature_channel, num_kp, block_expansion, max_features, num_down_blocks, reshape_channel, reshape_depth,
                 num_resblocks, estimate_occlusion_map=False, dense_motion_params=None, estimate_jacobian=False):
        super(OcclusionAwareSPADEGenerator, self).__init__()

        if dense_motion_params is not None:
            self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, feature_channel=feature_channel,
                                                           estimate_occlusion_map=estimate_occlusion_map,
                                                           **dense_motion_params)
        else:
            self.dense_motion_network = None

        self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(3, 3), padding=(1, 1))

        down_blocks = []
        for i in range(num_down_blocks):
            in_features = min(max_features, block_expansion * (2 ** i))
            out_features = min(max_features, block_expansion * (2 ** (i + 1)))
            down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
        self.down_blocks = nn.ModuleList(down_blocks)

        self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1)

        self.reshape_channel = reshape_channel
        self.reshape_depth = reshape_depth

        self.resblocks_3d = torch.nn.Sequential()
        for i in range(num_resblocks):
            self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1))

        out_features = block_expansion * (2 ** (num_down_blocks))
        self.third = SameBlock2d(max_features, out_features, kernel_size=(3, 3), padding=(1, 1), lrelu=True)
        self.fourth = nn.Conv2d(in_channels=out_features, out_channels=out_features, kernel_size=1, stride=1)

        self.estimate_occlusion_map = estimate_occlusion_map
        self.image_channel = image_channel

        self.decoder = SPADEDecoder()

    def deform_input(self, inp, deformation):
        _, d_old, h_old, w_old, _ = deformation.shape
        _, _, d, h, w = inp.shape
        if d_old != d or h_old != h or w_old != w:
            deformation = deformation.permute(0, 4, 1, 2, 3)
            deformation = F.interpolate(deformation, size=(d, h, w), mode='trilinear')
            deformation = deformation.permute(0, 2, 3, 4, 1)
        return F.grid_sample(inp, deformation)

    def forward(self, source_image, kp_driving, kp_source):
        # Encoding (downsampling) part
        out = self.first(source_image)
        for i in range(len(self.down_blocks)):
            out = self.down_blocks[i](out)
        out = self.second(out)
        bs, c, h, w = out.shape
        # print(out.shape)
        feature_3d = out.view(bs, self.reshape_channel, self.reshape_depth, h ,w) 
        feature_3d = self.resblocks_3d(feature_3d)

        # Transforming feature representation according to deformation and occlusion
        output_dict = {}
        if self.dense_motion_network is not None:
            dense_motion = self.dense_motion_network(feature=feature_3d, kp_driving=kp_driving,
                                                     kp_source=kp_source)
            output_dict['mask'] = dense_motion['mask']

            # import pdb; pdb.set_trace()

            if 'occlusion_map' in dense_motion:
                occlusion_map = dense_motion['occlusion_map']
                output_dict['occlusion_map'] = occlusion_map
            else:
                occlusion_map = None
            deformation = dense_motion['deformation']
            out = self.deform_input(feature_3d, deformation)

            bs, c, d, h, w = out.shape
            out = out.view(bs, c*d, h, w)
            out = self.third(out)
            out = self.fourth(out)

            # occlusion_map = torch.where(occlusion_map < 0.95, 0, occlusion_map)
            
            if occlusion_map is not None:
                if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]:
                    occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear')
                out = out * occlusion_map

        # Decoding part
        out = self.decoder(out)

        output_dict["prediction"] = out
        
        return output_dict