File size: 3,625 Bytes
79cf446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

from typing import Tuple, Union

import torch
import torch.nn as nn
from attrdict import AttrDict


class MlpProjector(nn.Module):
    def __init__(self, cfg):
        super().__init__()

        self.cfg = cfg

        if cfg.projector_type == "identity":
            modules = nn.Identity()

        elif cfg.projector_type == "linear":
            modules = nn.Linear(cfg.input_dim, cfg.n_embed)

        elif cfg.projector_type == "mlp_gelu":
            mlp_depth = cfg.get("depth", 1)
            modules = [nn.Linear(cfg.input_dim, cfg.n_embed)]
            for _ in range(1, mlp_depth):
                modules.append(nn.GELU())
                modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
            modules = nn.Sequential(*modules)

        elif cfg.projector_type == "low_high_hybrid_split_mlp_gelu":
            mlp_depth = cfg.get("depth", 1)
            self.high_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
            self.low_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)

            modules = []
            for _ in range(1, mlp_depth):
                modules.append(nn.GELU())
                modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
            modules = nn.Sequential(*modules)

        else:
            raise ValueError(f"Unknown projector type: {cfg.projector_type}")

        self.layers = modules

    def forward(
        self, x_or_tuple: Union[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]
    ):
        """

        Args:
            x_or_tuple (Union[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]:  if it is a tuple of torch.Tensor,
                then it comes from the hybrid vision encoder, and x = high_res_x, low_res_x);
                otherwise it is the feature from the single vision encoder.

        Returns:
            x (torch.Tensor): [b, s, c]
        """

        if isinstance(x_or_tuple, tuple):
            # self.cfg.projector_type == "low_high_hybrid_split_mlp_gelu":
            high_x, low_x = x_or_tuple
            high_x = self.high_up_proj(high_x)
            low_x = self.low_up_proj(low_x)
            x = torch.concat([high_x, low_x], dim=-1)
        else:
            x = x_or_tuple

        return self.layers(x)


if __name__ == "__main__":
    cfg = AttrDict(
        input_dim=1024,
        n_embed=2048,
        depth=2,
        projector_type="low_high_hybrid_split_mlp_gelu",
    )
    inputs = (torch.rand(4, 576, 1024), torch.rand(4, 576, 1024))

    m = MlpProjector(cfg)
    out = m(inputs)
    print(out.shape)