File size: 2,725 Bytes
af9e948
3e688ca
af9e948
 
3e688ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af9e948
 
 
 
3e688ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af9e948
 
 
6695a0d
af9e948
 
152ea60
af9e948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
import re

import torch
import gradio as gr
from transformers import AutoTokenizer, AutoFeatureExtractor, VisionEncoderDecoderModel

# Pattern to ignore all the text after 2 or more full stops
regex_pattern = "[.]{2,}"


def post_process(text):
    try:
        text = text.strip()
        text = re.split(regex_pattern, text)[0]
    except Exception as e:
        print(e)
        pass
    return text


def set_example_image(example: list) -> dict:
    return gr.Image.update(value=example[0])


def predict(image, max_length=64, num_beams=4):
    pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
    pixel_values = pixel_values.to(device)

    with torch.no_grad():
        output_ids = model.generate(
            pixel_values,
            max_length=max_length,
            num_beams=num_beams,
            return_dict_in_generate=True,
        ).sequences

    preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
    pred = post_process(preds[0])

    return pred


model_name_or_path = "deepklarity/poster2plot"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load model.

model = VisionEncoderDecoderModel.from_pretrained(model_name_or_path)
model.to(device)
print("Loaded model")

feature_extractor = AutoFeatureExtractor.from_pretrained(model.encoder.name_or_path)
print("Loaded feature_extractor")

tokenizer = AutoTokenizer.from_pretrained(model.decoder.name_or_path, use_fast=True)
if model.decoder.name_or_path == "gpt2":
    tokenizer.pad_token = tokenizer.eos_token
print("Loaded tokenizer")

examples = [[f"examples/{filename}"] for filename in next(os.walk('examples'), (None, None, []))[2]]
print(f"Loaded {len(examples)} example images")

with gr.Blocks() as poster2plot:
    with gr.Column():
        with gr.Row():
            gr.Markdown("# Poster2Plot: Upload a Movie/T.V show poster to generate a plot")
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    input_image = gr.Image(label='Input Image', type='numpy')
                with gr.Row():
                    submit_button = gr.Button(value="Submit", variant='primary')
            with gr.Column():
                plot = gr.Textbox(label="Plot")
        with gr.Row():
            example_images = gr.Dataset(components=[input_image], samples=examples)
        with gr.Row():
            gr.Markdown("Made by: [dk-crazydiv](https://twitter.com/kartik_godawat) and [dsr](https://twitter.com/dsr_ai)")

    submit_button.click(fn=predict, inputs=[input_image], outputs=[plot])
    example_images.click(fn=set_example_image, inputs=[example_images], outputs=example_images.components)

poster2plot.launch()