File size: 15,436 Bytes
dbca390 7d11721 dbca390 288f6d2 dbca390 dadcb61 288f6d2 dbca390 288f6d2 dbca390 03ba989 dbca390 bf3d9ee 03ba989 dbca390 dadcb61 dbca390 7d11721 dbca390 bf3d9ee dbca390 bf3d9ee dbca390 dadcb61 1306721 03ba989 dadcb61 1306721 dadcb61 5dbc0a1 1306721 5dbc0a1 dadcb61 03ba989 1306721 03ba989 1306721 03ba989 1306721 dadcb61 26288e8 f37f939 26288e8 bf3d9ee ce87886 26288e8 1306721 f37f939 1306721 f37f939 1306721 f37f939 1306721 ce87886 26288e8 ce87886 26288e8 bf3d9ee 26288e8 bf3d9ee 26288e8 bf3d9ee 03ba989 bf3d9ee 03ba989 26288e8 03ba989 f37f939 03ba989 bf3d9ee 03ba989 dbca390 03ba989 dbca390 dadcb61 bf3d9ee dadcb61 bf3d9ee dadcb61 dbca390 dadcb61 60ae2f3 bf3d9ee dbca390 dadcb61 60ae2f3 bf3d9ee dbca390 03ba989 dbca390 03ba989 dbca390 03ba989 dbca390 03ba989 bf3d9ee 03ba989 bf3d9ee 03ba989 bf3d9ee dadcb61 03ba989 dadcb61 bf3d9ee 7d11721 bf3d9ee 03ba989 bf3d9ee dadcb61 dbca390 8b138a3 26288e8 8b138a3 f37f939 8b138a3 bf3d9ee 03ba989 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
from document_to_gloss import DocumentToASLConverter
from document_parsing import DocumentParser
from vectorizer import Vectorizer
from video_gen import create_multi_stitched_video
import gradio as gr
import asyncio
import re
import boto3
import os
from botocore.config import Config
from dotenv import load_dotenv
import requests
import tempfile
import uuid
import base64
# Load environment variables from .env file
load_dotenv()
# Load R2/S3 environment secrets
R2_ASL_VIDEOS_URL = os.environ.get("R2_ASL_VIDEOS_URL")
R2_ENDPOINT = os.environ.get("R2_ENDPOINT")
R2_ACCESS_KEY_ID = os.environ.get("R2_ACCESS_KEY_ID")
R2_SECRET_ACCESS_KEY = os.environ.get("R2_SECRET_ACCESS_KEY")
# Validate that required environment variables are set
if not all([R2_ASL_VIDEOS_URL, R2_ENDPOINT, R2_ACCESS_KEY_ID,
R2_SECRET_ACCESS_KEY]):
raise ValueError(
"Missing required R2 environment variables. "
"Please check your .env file."
)
title = "AI-SL"
description = "Convert text to ASL!"
article = ("<p style='text-align: center'><a href='https://github.com/deenasun' "
"target='_blank'>Deena Sun on Github</a></p>")
inputs = gr.File(label="Upload Document (pdf, txt, docx, or epub)")
outputs = [
gr.JSON(label="Processing Results"),
gr.Video(label="ASL Video Output"),
gr.HTML(label="Download Link")
]
parser = DocumentParser()
asl_converter = DocumentToASLConverter()
vectorizer = Vectorizer()
session = boto3.session.Session()
s3 = session.client(
service_name='s3',
region_name='auto',
endpoint_url=R2_ENDPOINT,
aws_access_key_id=R2_ACCESS_KEY_ID,
aws_secret_access_key=R2_SECRET_ACCESS_KEY,
config=Config(signature_version='s3v4')
)
def clean_gloss_token(token):
"""Clean a single gloss token"""
if not token:
return None
# Remove punctuation and convert to lowercase
cleaned = re.sub(r'[^\w\s]', '', token).lower().strip()
# Remove extra whitespace
cleaned = re.sub(r'\s+', ' ', cleaned).strip()
return cleaned if cleaned else None
def verify_video_format(video_path):
"""
Verify that a video file is in a browser-compatible format (H.264 MP4)
"""
try:
import cv2
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return False, "Could not open video file"
# Get video properties
fourcc = int(cap.get(cv2.CAP_PROP_FOURCC))
codec = "".join([chr((fourcc >> 8 * i) & 0xFF) for i in range(4)])
cap.release()
# Check if it's H.264
if codec in ['avc1', 'H264', 'h264']:
return True, f"Video is H.264 encoded ({codec})"
else:
return False, f"Video codec {codec} may not be browser compatible"
except Exception as e:
return False, f"Error checking video format: {e}"
def upload_video_to_r2(video_path, bucket_name="asl-videos"):
"""
Upload a video file to R2 and return a public URL
"""
try:
# Verify video format for browser compatibility
is_compatible, message = verify_video_format(video_path)
print(f"Video format check: {message}")
# Generate a unique filename
file_extension = os.path.splitext(video_path)[1]
unique_filename = f"{uuid.uuid4()}{file_extension}"
# Upload to R2
with open(video_path, 'rb') as video_file:
s3.upload_fileobj(
video_file,
bucket_name,
unique_filename,
ExtraArgs={
'ACL': 'public-read',
'ContentType': 'video/mp4; codecs="avc1.42E01E"', # H.264
'CacheControl': 'max-age=86400', # Cache for 24 hours
'ContentDisposition': 'inline' # Force inline display
})
# Replace the endpoint with the domain for uploading
if R2_ENDPOINT:
public_domain = (R2_ENDPOINT.replace('https://', '')
.split('.')[0])
video_url = (f"https://{public_domain}.r2.cloudflarestorage.com/"
f"{bucket_name}/{unique_filename}")
print(f"Video uploaded to R2: {video_url}")
public_video_url = f"{R2_ASL_VIDEOS_URL}/{unique_filename}"
print(f"Public video url: {public_video_url}")
return public_video_url
else:
print("R2_ENDPOINT is not configured")
return None
except Exception as e:
print(f"Error uploading video to R2: {e}")
return None
def video_to_base64(video_path):
"""
Convert a video file to base64 string for direct download
"""
try:
with open(video_path, 'rb') as video_file:
video_data = video_file.read()
base64_data = base64.b64encode(video_data).decode('utf-8')
return f"data:video/mp4;base64,{base64_data}"
except Exception as e:
print(f"Error converting video to base64: {e}")
return None
def download_video_from_url(video_url):
"""
Download a video from a public R2 URL
Returns the local file path where the video is saved
"""
try:
# Create a temporary file with .mp4 extension
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
temp_path = temp_file.name
temp_file.close()
# Download the video
print(f"Downloading video from: {video_url}")
response = requests.get(video_url, stream=True)
response.raise_for_status()
# Save to temporary file
with open(temp_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Video downloaded to: {temp_path}")
return temp_path
except Exception as e:
print(f"Error downloading video: {e}")
return None
def cleanup_temp_video(file_path):
"""
Clean up temporary video file
"""
try:
if file_path and os.path.exists(file_path):
os.unlink(file_path)
print(f"Cleaned up: {file_path}")
except Exception as e:
print(f"Error cleaning up file: {e}")
def determine_input_type(input_data):
"""
Determine the type of input data and return a standardized format.
Returns: (input_type, processed_data) where input_type is 'text',
'file_path', or 'file_object'
"""
if isinstance(input_data, str):
# Check if it's a file path (contains file extension)
if any(ext in input_data.lower() for ext in ['.pdf', '.txt', '.docx', '.doc', '.epub']):
return 'file_path', input_data
# Check if it's a string representation of a gradio.FileData dict
elif input_data.startswith('{') and 'gradio.FileData' in input_data:
try:
import ast
import json
# Try to parse as JSON first
try:
file_data = json.loads(input_data)
except json.JSONDecodeError:
# Fall back to ast.literal_eval for safer parsing
file_data = ast.literal_eval(input_data)
if isinstance(file_data, dict) and 'path' in file_data:
print(f"Parsed FileData: {file_data}")
return 'file_path', file_data['path']
except (ValueError, SyntaxError, json.JSONDecodeError) as e:
print(f"Error parsing FileData string: {e}")
print(f"Input data: {input_data}")
pass
else:
return 'text', input_data.strip()
elif isinstance(input_data, dict) and 'path' in input_data:
# This is a gradio.FileData object from API calls
return 'file_path', input_data['path']
elif hasattr(input_data, 'name'):
# This is a regular file object
return 'file_path', input_data.name
else:
return 'unknown', None
def process_input(input_data):
"""
Extract text content from various input types.
Returns the text content ready for ASL conversion.
"""
input_type, processed_data = determine_input_type(input_data)
if input_type == 'text':
return processed_data
elif input_type == 'file_path':
try:
print(f"Processing file: {processed_data}")
# Use document converter for all file types
gloss = asl_converter.convert_document(processed_data)
print(f"Converted gloss: {gloss[:100]}...")
return gloss
except Exception as e:
print(f"Error processing file: {e}")
return None
else:
print(f"Unsupported input type: {type(input_data)}")
return None
async def parse_vectorize_and_search_unified(input_data):
"""
Unified function that handles both text and file inputs
"""
# Process the input to get gloss
gloss = process_input(input_data)
if not gloss:
return {
"status": "error",
"message": "Failed to process input"
}, None
print("ASL", gloss)
# Split by spaces and clean each token
gloss_tokens = gloss.split()
cleaned_tokens = []
for token in gloss_tokens:
cleaned = clean_gloss_token(token)
if cleaned: # Only add non-empty tokens
cleaned_tokens.append(cleaned)
print("Cleaned tokens:", cleaned_tokens)
videos = []
video_files = [] # Store local file paths for stitching
for g in cleaned_tokens:
print(f"Processing {g}")
try:
result = await vectorizer.vector_query_from_supabase(query=g)
print("result", result)
if result.get("match", False):
video_url = result["video_url"]
videos.append(video_url)
# Download the video
local_path = download_video_from_url(video_url)
if local_path:
video_files.append(local_path)
except Exception as e:
print(f"Error processing {g}: {e}")
continue
# Create stitched video if we have multiple videos
stitched_video_path = None
if len(video_files) > 1:
try:
print(f"Creating stitched video from {len(video_files)} videos...")
stitched_video_path = tempfile.NamedTemporaryFile(
delete=False, suffix='.mp4'
).name
create_multi_stitched_video(video_files, stitched_video_path)
print(f"Stitched video created: {stitched_video_path}")
except Exception as e:
print(f"Error creating stitched video: {e}")
stitched_video_path = None
elif len(video_files) == 1:
# If only one video, just use it directly
stitched_video_path = video_files[0]
# Upload final video to R2 and get public URL
video_download_url = None
if stitched_video_path:
video_download_url = upload_video_to_r2(stitched_video_path)
# Don't clean up the local file yet - let frontend use it first
# Clean up individual video files after stitching
for video_file in video_files:
if video_file != stitched_video_path: # Don't delete the final output
cleanup_temp_video(video_file)
video64 = video_to_base64(stitched_video_path)
# Return simplified results
return {
"status": "success",
"videos": videos,
"video_count": len(videos),
"gloss": gloss,
"cleaned_tokens": cleaned_tokens,
"video_download_url": video_download_url,
"video_as_base_64": video64
}, stitched_video_path
def parse_vectorize_and_search_unified_sync(input_data):
return asyncio.run(parse_vectorize_and_search_unified(input_data))
def predict_unified(input_data):
"""
Unified prediction function that handles both text and file inputs
"""
try:
if input_data is None:
return {
"status": "error",
"message": "Please provide text or upload a document"
}, None
# Use the unified processing function
result = parse_vectorize_and_search_unified_sync(input_data)
# Get the results
json_data, local_video_path = result
# If we have a local video path, use it directly for Gradio
if local_video_path and json_data.get("status") == "success":
# Schedule cleanup of the video file after a delay
# This gives Gradio time to load and display the video
import threading
import time
def delayed_cleanup(video_path):
time.sleep(30) # Wait 30 seconds before cleanup
cleanup_temp_video(video_path)
# Start cleanup thread
cleanup_thread = threading.Thread(
target=delayed_cleanup,
args=(local_video_path,)
)
cleanup_thread.daemon = True
cleanup_thread.start()
return json_data, local_video_path
return result
except Exception as e:
print(f"Error in predict_unified function: {e}")
return {
"status": "error",
"message": f"An error occurred: {str(e)}"
}, None
# Create the Gradio interface
def create_interface():
"""Create and configure the Gradio interface"""
# Create the interface
interface = gr.Interface(
fn=predict,
inputs=[
gr.Textbox(
label="Enter text to convert to ASL",
placeholder="Type or paste your text here...",
lines=5
),
gr.File(
label="Upload Document (pdf, txt, docx, or epub)",
file_types=[".pdf", ".txt", ".docx", ".epub"]
)
],
outputs=[
gr.JSON(label="Results"),
gr.Video(label="ASL Video")
],
title=title,
description=description,
article=article
)
return interface
# Add a predict function for Hugging Face API access
def predict(text, file):
"""
Predict function for Hugging Face API access.
This function will be available as the /predict endpoint.
"""
# Determine which input to use
if text and text.strip():
# Use text input
input_data = text.strip()
elif file is not None:
# Use file input - let the centralized processor handle the type
input_data = file
else:
# No input provided
return {
"status": "error",
"message": "Please provide either text or upload a file"
}, None
print("Input to the prediction function", input_data)
print("Input type:", type(input))
# Process using the unified function
return predict_unified(input_data)
# For Hugging Face Spaces, use the Interface
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True # Set to True for local testing with public URL
)
|