Spaces:
Sleeping
Sleeping
File size: 6,295 Bytes
6c9c423 077843e 6c9c423 64b033f 6c9c423 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import cv2
import numpy as np
import tempfile
import time
import streamlit as st
from PIL import Image
from io import BytesIO
import plotly.graph_objs as go
from transformers import CLIPProcessor, CLIPModel
from torch.cuda import is_available
MODEL_ID = "openai/clip-vit-base-patch32"
DEMO_IMAGE = 'demo.jpg'
EMOTION_DICT = {
0: ['Angry', '๐ก'],
1: ['Disgusted', '๐คข'],
2: ['Fearful', '๐จ'],
3: ['Happy', '๐'],
4: ['Neutral', '๐'],
5: ['Sad', 'โน๏ธ'],
6: ['Surprised', '๐ฎ']
}
device = 'cuda' if is_available() else 'cpu'
@st.cache_data
def load_model():
processor = CLIPProcessor.from_pretrained(MODEL_ID)
model = CLIPModel.from_pretrained(MODEL_ID)
return processor, model
@st.cache_data
def load_token_embds():
emotions = list(EMOTION_DICT.values())
desc = [f'a photo of a {emotion[0]} person' for emotion in emotions]
tok = processor(text = desc, return_tensors = 'pt', images = None, padding = True).to(device)
tok_emb = model.get_text_features(**tok)
tok_emb = tok_emb.detach().cpu().numpy() / np.linalg.norm(tok_emb.detach().cpu().numpy(), axis=0)
return tok_emb
st.set_page_config(page_title="Mood Scope", page_icon="๐ญ")
st.title('Mood-Scope')
st.sidebar.title('Options')
app_mode = st.sidebar.selectbox('Choose Page', ['Run Mood Scope', 'About the App'])
st.markdown(
"""
<style>
[data-testid = 'stSidebar'][aria-expanded = 'true'] > div:first-child{
width: 350px
}
[data-testid = 'stSidebar'][aria-expanded = 'false'] > div:first-child{
width: 350px
margin-left: -350px
}
</style>
""", unsafe_allow_html = True
)
if app_mode == 'About the App':
st.markdown("""
Mood Scope detects emotions of people in an image using deep learning
# Installation
- Clone this repo ` git clone https://github.com/Daheer/mood-scope.git `
- Install requirements ` pip insatll requirements.txt `
- Launch streamlit app ` streamlit run mood_scope.py `
# Usage
The 'Run Mood Scope' section of the app lets you upload any image. After doing so, it analyzes and detects the mood of the person in the picture.
The app displays the detected dominant emotion with a suitable emoji.
It also displays the distribution of the moods using a spider chart. The higher the point, the stronger the presence of that emotion in the image.
### Emotion-emoji guide
| Emotion | Emoji |
|------------|------------|
| Angry | ๐ก |
| Disgusted | ๐คข |
| Fearful | ๐จ |
| Happy | ๐ |
| Neutral | ๐ |
| Sad | โน๏ธ |
| Surprised | ๐ฎ |
The app is available and can be accessed via two platforms
- [`Hugging Face Spaces`](https://huggingface.co/spaces/deedax/mood-scope)
- [`Render`](https://mood-scope.onrender.com/)
# Features
- Image upload
- Emotion detection
- Spider chart display
- Emotion intensity analysis
# Built Using
- [Python](https://python.org)
- [PyTorch](https://pytorch.org)
- [OpenAI CLIP](https://openai.com/research/clip)
- [Streamlit](https://streamlit.io/)
# Details
Face facts achieves zero-shot image classification using CLIP. CLIP can be a powerful tool for image classification because it allows you to leverage both visual and language information to classify images. This even means no dataset was used for any training or finetuning.
First, the emotions (angry, fearful, sad, neutral etc.) were organized using a template to create natural language descriptions for the images. Each emotion was transformed into a template phrase "a photo of a {emotion} person," where {emotion} is one of the emotions in the list. The text descriptions were then tokenized to generate text embeddings that can be processed by the CLIP model.
The image was preprocessed using the CLIPProcessor, which includes resizing and normalization. This prepares the image for feature extraction. The CLIP model then computes features for the image to generate image embeddings that capture the visual features of the image.
To calculate the similarity between each description and the image, a dot product is performed between the image embeddings and text embeddings. This results in a score that indicates how similar the description is to the image. The score is then used to classify the image into one of the emotion categories.
# Contact
Dahir Ibrahim (Deedax Inc)
Email - dahiru.ibrahim@outlook.com
Twitter - https://twitter.com/DeedaxInc
YouTube - https://www.youtube.com/@deedaxinc
Project Link - https://github.com/Daheer/mask-check
""")
elif app_mode == 'Run Mood Scope':
processor, model = load_model()
st.sidebar.markdown('---')
with st.columns(3)[1]:
kpi = st.markdown('**Dominant Detected Emotion**')
emotion_emoji = st.markdown('-')
#emotion_text = st.markdown('-')
img_file_buffer = st.sidebar.file_uploader('Upload an Image', type = ['jpg', 'png', 'jpeg'])
if img_file_buffer:
buffer = BytesIO(img_file_buffer.read())
data = np.frombuffer(buffer.getvalue(), dtype=np.uint8)
image = cv2.imdecode(data, cv2.IMREAD_COLOR)
else:
demo_image = DEMO_IMAGE
image = cv2.imread(demo_image, cv2.IMREAD_COLOR)
st.sidebar.text('Original Image')
st.sidebar.image(image, channels = 'BGR')
im_proc = processor(images=image, return_tensors='pt')['pixel_values']
im_emb = model.to(device).get_image_features(im_proc.to(device))
im_emb = im_emb.detach().cpu().numpy()
tok_emb = load_token_embds()
score = np.dot(im_emb, tok_emb.T)
output_emoji = EMOTION_DICT[score.argmax(axis = 1).item()][1]
output_text = EMOTION_DICT[score.argmax(axis = 1).item()][0]
emotion_emoji.write(f'<h1> {output_emoji} </h1>', unsafe_allow_html = True)
categories = [emotion[0] for emotion in EMOTION_DICT.values()]
data = list(map(int, (100 * (score / score.sum())).squeeze()))
trace = go.Scatterpolar(r = data, theta = categories, fill = 'toself', name = 'Emotions')
layout = go.Layout(
polar = dict(
radialaxis = dict(
visible = False,
range = [0, 50]
)
),
)
fig = go.Figure(data=[trace], layout=layout)
st.plotly_chart(fig, use_container_width=True)
#emotion_text.write(f'**{output_text}**')
|