File size: 2,498 Bytes
41b2adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import requests
import gradio as gr
import openai
from dotenv import load_dotenv

# Load environment variables
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")

# Define function to get current weather
def get_current_weather(location):
    weather_api_key = os.getenv("WEATHER_API_KEY")
    base_url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={weather_api_key}&units=metric"
    response = requests.get(base_url, timeout=10)
    response.raise_for_status()
    data = response.json()
    return {
        "location": location,
        "temperature": data['main']['temp'],
        "weather": data['weather'][0]['description']
    }

# Define chat function
def weather_chat(user_message):
    messages = [
        {"role": "user", "content": user_message},
        {"role": "assistant", "content": "You are a weather bot. Answer only in Celsius. If two cities are asked, provide weather for both."}
    ]

    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        temperature=0,
        max_tokens=256,
        messages=messages,
        functions=[
            {
                "name": "get_current_weather",
                "description": "Get the current weather in a given location",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {"type": "string", "description": "The city, e.g. San Francisco"}
                    },
                    "required": ["location"]
                }
            }
        ]
    )

    function_call = response['choices'][0]['message']['function_call']
    arguments = eval(function_call['arguments'])
    weather_data = get_current_weather(arguments['location'])

    messages.append({"role": "assistant", "content": None, "function_call": function_call})
    messages.append({"role": "function", "name": "get_current_weather", "content": str(weather_data)})

    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=messages
    )

    return response['choices'][0]['message']['content']

# Define Gradio interface
iface = gr.Interface(
    fn=weather_chat,
    inputs=gr.Textbox(label="Weather Queries"),
    outputs=gr.Textbox(label="Weather Updates"),
    title="DDS Weather Bot",
    description="Ask me anything about weather!"
)

# Launch the Gradio interface
iface.launch()