Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,362 Bytes
03b30bd 7d6b90a 03b30bd 7d6b90a 03b30bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import gradio as gr
import io
import json
import numpy
import os
import pandas as pd
import piexif
import spaces
import timeit
import torch
import torchvision
from diffusers import AutoencoderKL, AutoencoderTiny
from PIL import Image
from PIL.PngImagePlugin import PngInfo
from torchvision.io import decode_image
from torchvision.transforms import v2
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
vae = vae.to(device)
# Encoding
def image_to_latent(image):
transforms = v2.Compose([
v2.ToImage(),
v2.Resize(512),
v2.ToDtype(torch.float32, scale=True)
])
tensor = transforms(image).unsqueeze(0).to(device) * 2 - 1
with torch.no_grad():
encoded_image = vae.encode(tensor)
return encoded_image.latent_dist.sample()
def latent_to_latcomp(latent):
latent = latent.to(device)
min_val, max_val = latent.min(), latent.max()
normalised_latent = (latent - min_val) / (max_val - min_val) * 255
clamped_latent = normalised_latent.clamp(0, 255).squeeze(0).byte()
np_latent = clamped_latent.permute(1, 2, 0).cpu().numpy()
latcomp = Image.fromarray(np_latent, mode="RGBA")
range_data = { "min_val": min_val.item(), "max_val": max_val.item() }
json_comment = json.dumps(range_data)
exif_dict = piexif.load(latcomp.info["exif"]) if "exif" in latcomp.info else {}
if "Exif" not in exif_dict:
exif_dict["Exif"] = {}
exif_dict["Exif"][piexif.ExifIFD.UserComment] = json_comment.encode("utf-16")
exif_bytes = piexif.dump(exif_dict)
filepath = "latcomp.webp"
latcomp.save(filepath, format="WebP", exif=exif_bytes, lossless=True)
return filepath
@spaces.GPU
def image_to_latcomp(image):
latent = image_to_latent(image)
latcomp = latent_to_latcomp(latent)
return latcomp
# Decoding
def latcomp_to_latent(latcomp):
exif_dict = piexif.load(latcomp.info["exif"])
user_comment = exif_dict.get("Exif", {}).get(piexif.ExifIFD.UserComment)
user_comment = user_comment.decode("utf-16")
metadata = json.loads(user_comment)
min_val = metadata["min_val"]
max_val = metadata["max_val"]
latent = v2.PILToTensor()(latcomp).unsqueeze(0).float().to(device)
denormalised_latent = (latent / 255) * (max_val - min_val) + min_val
return denormalised_latent
def latent_to_image(latent):
with torch.no_grad():
decoded_image = vae.decode(latent).sample
tensor = ((decoded_image + 1) / 2).squeeze(0).clamp(0, 1)
transforms = v2.Compose([
v2.ToDtype(torch.uint8, scale=True),
])
int_tensor = transforms(tensor.to(device))
np_image = int_tensor.permute(1, 2, 0).cpu().numpy()
image = Image.fromarray(np_image)
filepath = "image.webp"
image.save(filepath, format="WebP", lossless=True)
return filepath
@spaces.GPU
def latcomp_to_image(latcomp):
latent = latcomp_to_latent(latcomp)
image = latent_to_image(latent)
return image
# Gradio
comparison_data = {
"Method": ["Size (KB)"],
"No Compression": [338],
"LatComp": [11],
"WebP": [35],
"JPEG": [66],
"TinyPNG": [92],
"PNG": [107],
"WebP (Lossless)": [214],
"PNG (Lossless)": [271],
"ZIP (Lossless)": [338]
}
df = pd.DataFrame(comparison_data)
styled_df = df.style.background_gradient(subset=['LatComp'], cmap='YlOrRd')
with gr.Blocks() as app:
gr.Markdown("# LatComp (Latent Compression)")
gr.Markdown()
gr.Markdown(
"""
## LatComp compression uses an AI model (VAE) and some custom code & math to compress images into a small, reversible format.
"""
)
gr.Markdown(
"""
This work was inspired by **Jeremy Howard** and **Jonathan Whitaker** of [fast.ai](https://www.fast.ai/) and [answer.ai](https://www.answer.ai/).<br>
While taking the fast.ai course, I was learning about **Variational Autoencoders (VAE)** and began to wonder:<br>
*Is it possible to represent the latent space as an image, and then reconstruct the original image from that representation?*
"""
)
gr.Markdown()
gr.Markdown("### **Compression Comparison:** A 338 KB image compressed using various methods.")
gr.Dataframe(styled_df)
gr.Markdown("**Note:** *Lossless compression means the original image can be perfectly reconstructed.*")
gr.Markdown()
with gr.Row():
gr.Markdown(
"""
## **Use Cases:**
- Save storage space
- Faster file transfers
- Backups & archives
"""
)
gr.Markdown(
"""
## **Potential Improvements:**
- Better/Faster AI model (VAE)
- Replace custom code & math with an AI model
- All-in-one AI Model
"""
)
gr.Markdown()
with gr.Tab("Compression"):
gr.Markdown(
"""
## Compress your image into a small and reversible format.
Images bigger than 512x512 will be resized to reduce GPU memory usage.
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Image", type="pil")
with gr.Row():
clear_compress_button = gr.ClearButton()
compress_button = gr.Button("Compress", variant="primary")
output_latcomp = gr.Image(label="Latcomp")
gr.Examples(
examples=[["macaw.png"], ["flowers.jpg"], ["newyork.jpg"]],
inputs=input_image,
outputs=output_latcomp,
fn=image_to_latcomp,
cache_examples=True,
cache_mode="eager"
)
with gr.Tab("Decompression"):
gr.Markdown("## Get your original image back from a latcomp.")
with gr.Row():
with gr.Column():
input_latcomp = gr.Image(label="Latcomp", type="pil", image_mode="RGBA", sources=["upload", "clipboard"])
with gr.Row():
clear_decompress_button = gr.ClearButton()
decompress_button = gr.Button("Decompress", variant="primary")
output_image = gr.Image(label="Image")
gr.Examples(
examples=[["macaw_latcomp.webp"], ["flowers_latcomp.webp"], ["newyork_latcomp.webp"]],
inputs=input_latcomp,
outputs=output_image,
fn=latcomp_to_image,
cache_examples=True,
cache_mode="eager"
)
clear_compress_button.add([input_image, output_latcomp])
compress_button.click(fn=image_to_latcomp, inputs=input_image, outputs=output_latcomp)
clear_decompress_button.add([input_latcomp, output_image])
decompress_button.click(fn=latcomp_to_image, inputs=input_latcomp, outputs=output_image)
app.launch() |