File size: 25,670 Bytes
ffead1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
import argparse
import logging
import math
import os
import random
from pathlib import Path

import jax
import jax.numpy as jnp
import numpy as np
import optax
import PIL
import torch
import torch.utils.checkpoint
import transformers
from flax import jax_utils
from flax.training import train_state
from flax.training.common_utils import shard
from huggingface_hub import create_repo, upload_folder

# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel, set_seed

from diffusers import (
    FlaxAutoencoderKL,
    FlaxDDPMScheduler,
    FlaxPNDMScheduler,
    FlaxStableDiffusionPipeline,
    FlaxUNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
from diffusers.utils import check_min_version


if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
    PIL_INTERPOLATION = {
        "linear": PIL.Image.Resampling.BILINEAR,
        "bilinear": PIL.Image.Resampling.BILINEAR,
        "bicubic": PIL.Image.Resampling.BICUBIC,
        "lanczos": PIL.Image.Resampling.LANCZOS,
        "nearest": PIL.Image.Resampling.NEAREST,
    }
else:
    PIL_INTERPOLATION = {
        "linear": PIL.Image.LINEAR,
        "bilinear": PIL.Image.BILINEAR,
        "bicubic": PIL.Image.BICUBIC,
        "lanczos": PIL.Image.LANCZOS,
        "nearest": PIL.Image.NEAREST,
    }
# ------------------------------------------------------------------------------

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.15.0.dev0")

logger = logging.getLogger(__name__)


def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data."
    )
    parser.add_argument(
        "--placeholder_token",
        type=str,
        default=None,
        required=True,
        help="A token to use as a placeholder for the concept.",
    )
    parser.add_argument(
        "--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word."
    )
    parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'")
    parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution."
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=5000,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--save_steps",
        type=int,
        default=500,
        help="Save learned_embeds.bin every X updates steps.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=True,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument(
        "--use_auth_token",
        action="store_true",
        help=(
            "Will use the token generated when running `huggingface-cli login` (necessary to use this script with"
            " private models)."
        ),
    )
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.train_data_dir is None:
        raise ValueError("You must specify a train data directory.")

    return args


imagenet_templates_small = [
    "a photo of a {}",
    "a rendering of a {}",
    "a cropped photo of the {}",
    "the photo of a {}",
    "a photo of a clean {}",
    "a photo of a dirty {}",
    "a dark photo of the {}",
    "a photo of my {}",
    "a photo of the cool {}",
    "a close-up photo of a {}",
    "a bright photo of the {}",
    "a cropped photo of a {}",
    "a photo of the {}",
    "a good photo of the {}",
    "a photo of one {}",
    "a close-up photo of the {}",
    "a rendition of the {}",
    "a photo of the clean {}",
    "a rendition of a {}",
    "a photo of a nice {}",
    "a good photo of a {}",
    "a photo of the nice {}",
    "a photo of the small {}",
    "a photo of the weird {}",
    "a photo of the large {}",
    "a photo of a cool {}",
    "a photo of a small {}",
]

imagenet_style_templates_small = [
    "a painting in the style of {}",
    "a rendering in the style of {}",
    "a cropped painting in the style of {}",
    "the painting in the style of {}",
    "a clean painting in the style of {}",
    "a dirty painting in the style of {}",
    "a dark painting in the style of {}",
    "a picture in the style of {}",
    "a cool painting in the style of {}",
    "a close-up painting in the style of {}",
    "a bright painting in the style of {}",
    "a cropped painting in the style of {}",
    "a good painting in the style of {}",
    "a close-up painting in the style of {}",
    "a rendition in the style of {}",
    "a nice painting in the style of {}",
    "a small painting in the style of {}",
    "a weird painting in the style of {}",
    "a large painting in the style of {}",
]


class TextualInversionDataset(Dataset):
    def __init__(
        self,
        data_root,
        tokenizer,
        learnable_property="object",  # [object, style]
        size=512,
        repeats=100,
        interpolation="bicubic",
        flip_p=0.5,
        set="train",
        placeholder_token="*",
        center_crop=False,
    ):
        self.data_root = data_root
        self.tokenizer = tokenizer
        self.learnable_property = learnable_property
        self.size = size
        self.placeholder_token = placeholder_token
        self.center_crop = center_crop
        self.flip_p = flip_p

        self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]

        self.num_images = len(self.image_paths)
        self._length = self.num_images

        if set == "train":
            self._length = self.num_images * repeats

        self.interpolation = {
            "linear": PIL_INTERPOLATION["linear"],
            "bilinear": PIL_INTERPOLATION["bilinear"],
            "bicubic": PIL_INTERPOLATION["bicubic"],
            "lanczos": PIL_INTERPOLATION["lanczos"],
        }[interpolation]

        self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
        self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)

    def __len__(self):
        return self._length

    def __getitem__(self, i):
        example = {}
        image = Image.open(self.image_paths[i % self.num_images])

        if not image.mode == "RGB":
            image = image.convert("RGB")

        placeholder_string = self.placeholder_token
        text = random.choice(self.templates).format(placeholder_string)

        example["input_ids"] = self.tokenizer(
            text,
            padding="max_length",
            truncation=True,
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        ).input_ids[0]

        # default to score-sde preprocessing
        img = np.array(image).astype(np.uint8)

        if self.center_crop:
            crop = min(img.shape[0], img.shape[1])
            (
                h,
                w,
            ) = (
                img.shape[0],
                img.shape[1],
            )
            img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2]

        image = Image.fromarray(img)
        image = image.resize((self.size, self.size), resample=self.interpolation)

        image = self.flip_transform(image)
        image = np.array(image).astype(np.uint8)
        image = (image / 127.5 - 1.0).astype(np.float32)

        example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
        return example


def resize_token_embeddings(model, new_num_tokens, initializer_token_id, placeholder_token_id, rng):
    if model.config.vocab_size == new_num_tokens or new_num_tokens is None:
        return
    model.config.vocab_size = new_num_tokens

    params = model.params
    old_embeddings = params["text_model"]["embeddings"]["token_embedding"]["embedding"]
    old_num_tokens, emb_dim = old_embeddings.shape

    initializer = jax.nn.initializers.normal()

    new_embeddings = initializer(rng, (new_num_tokens, emb_dim))
    new_embeddings = new_embeddings.at[:old_num_tokens].set(old_embeddings)
    new_embeddings = new_embeddings.at[placeholder_token_id].set(new_embeddings[initializer_token_id])
    params["text_model"]["embeddings"]["token_embedding"]["embedding"] = new_embeddings

    model.params = params
    return model


def get_params_to_save(params):
    return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))


def main():
    args = parse_args()

    if args.seed is not None:
        set_seed(args.seed)

    if jax.process_index() == 0:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        transformers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()

    # Load the tokenizer and add the placeholder token as a additional special token
    if args.tokenizer_name:
        tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
    elif args.pretrained_model_name_or_path:
        tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")

    # Add the placeholder token in tokenizer
    num_added_tokens = tokenizer.add_tokens(args.placeholder_token)
    if num_added_tokens == 0:
        raise ValueError(
            f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
            " `placeholder_token` that is not already in the tokenizer."
        )

    # Convert the initializer_token, placeholder_token to ids
    token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
    # Check if initializer_token is a single token or a sequence of tokens
    if len(token_ids) > 1:
        raise ValueError("The initializer token must be a single token.")

    initializer_token_id = token_ids[0]
    placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token)

    # Load models and create wrapper for stable diffusion
    text_encoder = FlaxCLIPTextModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
    )
    vae, vae_params = FlaxAutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision
    )
    unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
    )

    # Create sampling rng
    rng = jax.random.PRNGKey(args.seed)
    rng, _ = jax.random.split(rng)
    # Resize the token embeddings as we are adding new special tokens to the tokenizer
    text_encoder = resize_token_embeddings(
        text_encoder, len(tokenizer), initializer_token_id, placeholder_token_id, rng
    )
    original_token_embeds = text_encoder.params["text_model"]["embeddings"]["token_embedding"]["embedding"]

    train_dataset = TextualInversionDataset(
        data_root=args.train_data_dir,
        tokenizer=tokenizer,
        size=args.resolution,
        placeholder_token=args.placeholder_token,
        repeats=args.repeats,
        learnable_property=args.learnable_property,
        center_crop=args.center_crop,
        set="train",
    )

    def collate_fn(examples):
        pixel_values = torch.stack([example["pixel_values"] for example in examples])
        input_ids = torch.stack([example["input_ids"] for example in examples])

        batch = {"pixel_values": pixel_values, "input_ids": input_ids}
        batch = {k: v.numpy() for k, v in batch.items()}

        return batch

    total_train_batch_size = args.train_batch_size * jax.local_device_count()
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset, batch_size=total_train_batch_size, shuffle=True, drop_last=True, collate_fn=collate_fn
    )

    # Optimization
    if args.scale_lr:
        args.learning_rate = args.learning_rate * total_train_batch_size

    constant_scheduler = optax.constant_schedule(args.learning_rate)

    optimizer = optax.adamw(
        learning_rate=constant_scheduler,
        b1=args.adam_beta1,
        b2=args.adam_beta2,
        eps=args.adam_epsilon,
        weight_decay=args.adam_weight_decay,
    )

    def create_mask(params, label_fn):
        def _map(params, mask, label_fn):
            for k in params:
                if label_fn(k):
                    mask[k] = "token_embedding"
                else:
                    if isinstance(params[k], dict):
                        mask[k] = {}
                        _map(params[k], mask[k], label_fn)
                    else:
                        mask[k] = "zero"

        mask = {}
        _map(params, mask, label_fn)
        return mask

    def zero_grads():
        # from https://github.com/deepmind/optax/issues/159#issuecomment-896459491
        def init_fn(_):
            return ()

        def update_fn(updates, state, params=None):
            return jax.tree_util.tree_map(jnp.zeros_like, updates), ()

        return optax.GradientTransformation(init_fn, update_fn)

    # Zero out gradients of layers other than the token embedding layer
    tx = optax.multi_transform(
        {"token_embedding": optimizer, "zero": zero_grads()},
        create_mask(text_encoder.params, lambda s: s == "token_embedding"),
    )

    state = train_state.TrainState.create(apply_fn=text_encoder.__call__, params=text_encoder.params, tx=tx)

    noise_scheduler = FlaxDDPMScheduler(
        beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
    )
    noise_scheduler_state = noise_scheduler.create_state()

    # Initialize our training
    train_rngs = jax.random.split(rng, jax.local_device_count())

    # Define gradient train step fn
    def train_step(state, vae_params, unet_params, batch, train_rng):
        dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3)

        def compute_loss(params):
            vae_outputs = vae.apply(
                {"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode
            )
            latents = vae_outputs.latent_dist.sample(sample_rng)
            # (NHWC) -> (NCHW)
            latents = jnp.transpose(latents, (0, 3, 1, 2))
            latents = latents * vae.config.scaling_factor

            noise_rng, timestep_rng = jax.random.split(sample_rng)
            noise = jax.random.normal(noise_rng, latents.shape)
            bsz = latents.shape[0]
            timesteps = jax.random.randint(
                timestep_rng,
                (bsz,),
                0,
                noise_scheduler.config.num_train_timesteps,
            )
            noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps)
            encoder_hidden_states = state.apply_fn(
                batch["input_ids"], params=params, dropout_rng=dropout_rng, train=True
            )[0]
            # Predict the noise residual and compute loss
            model_pred = unet.apply(
                {"params": unet_params}, noisy_latents, timesteps, encoder_hidden_states, train=False
            ).sample

            # Get the target for loss depending on the prediction type
            if noise_scheduler.config.prediction_type == "epsilon":
                target = noise
            elif noise_scheduler.config.prediction_type == "v_prediction":
                target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps)
            else:
                raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

            loss = (target - model_pred) ** 2
            loss = loss.mean()

            return loss

        grad_fn = jax.value_and_grad(compute_loss)
        loss, grad = grad_fn(state.params)
        grad = jax.lax.pmean(grad, "batch")
        new_state = state.apply_gradients(grads=grad)

        # Keep the token embeddings fixed except the newly added embeddings for the concept,
        # as we only want to optimize the concept embeddings
        token_embeds = original_token_embeds.at[placeholder_token_id].set(
            new_state.params["text_model"]["embeddings"]["token_embedding"]["embedding"][placeholder_token_id]
        )
        new_state.params["text_model"]["embeddings"]["token_embedding"]["embedding"] = token_embeds

        metrics = {"loss": loss}
        metrics = jax.lax.pmean(metrics, axis_name="batch")
        return new_state, metrics, new_train_rng

    # Create parallel version of the train and eval step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))

    # Replicate the train state on each device
    state = jax_utils.replicate(state)
    vae_params = jax_utils.replicate(vae_params)
    unet_params = jax_utils.replicate(unet_params)

    # Train!
    num_update_steps_per_epoch = math.ceil(len(train_dataloader))

    # Scheduler and math around the number of training steps.
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch

    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")

    global_step = 0

    epochs = tqdm(range(args.num_train_epochs), desc=f"Epoch ... (1/{args.num_train_epochs})", position=0)
    for epoch in epochs:
        # ======================== Training ================================

        train_metrics = []

        steps_per_epoch = len(train_dataset) // total_train_batch_size
        train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
        # train
        for batch in train_dataloader:
            batch = shard(batch)
            state, train_metric, train_rngs = p_train_step(state, vae_params, unet_params, batch, train_rngs)
            train_metrics.append(train_metric)

            train_step_progress_bar.update(1)
            global_step += 1

            if global_step >= args.max_train_steps:
                break
            if global_step % args.save_steps == 0:
                learned_embeds = get_params_to_save(state.params)["text_model"]["embeddings"]["token_embedding"][
                    "embedding"
                ][placeholder_token_id]
                learned_embeds_dict = {args.placeholder_token: learned_embeds}
                jnp.save(
                    os.path.join(args.output_dir, "learned_embeds-" + str(global_step) + ".npy"), learned_embeds_dict
                )

        train_metric = jax_utils.unreplicate(train_metric)

        train_step_progress_bar.close()
        epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")

    # Create the pipeline using using the trained modules and save it.
    if jax.process_index() == 0:
        scheduler = FlaxPNDMScheduler(
            beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True
        )
        safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained(
            "CompVis/stable-diffusion-safety-checker", from_pt=True
        )
        pipeline = FlaxStableDiffusionPipeline(
            text_encoder=text_encoder,
            vae=vae,
            unet=unet,
            tokenizer=tokenizer,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"),
        )

        pipeline.save_pretrained(
            args.output_dir,
            params={
                "text_encoder": get_params_to_save(state.params),
                "vae": get_params_to_save(vae_params),
                "unet": get_params_to_save(unet_params),
                "safety_checker": safety_checker.params,
            },
        )

        # Also save the newly trained embeddings
        learned_embeds = get_params_to_save(state.params)["text_model"]["embeddings"]["token_embedding"]["embedding"][
            placeholder_token_id
        ]
        learned_embeds_dict = {args.placeholder_token: learned_embeds}
        jnp.save(os.path.join(args.output_dir, "learned_embeds.npy"), learned_embeds_dict)

        if args.push_to_hub:
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )


if __name__ == "__main__":
    main()