Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,270 Bytes
ffead1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import torch
from audioldm.latent_diffusion.ema import *
from audioldm.variational_autoencoder.modules import Encoder, Decoder
from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution
from audioldm.hifigan.utilities import get_vocoder, vocoder_infer
class AutoencoderKL(nn.Module):
def __init__(
self,
ddconfig=None,
lossconfig=None,
image_key="fbank",
embed_dim=None,
time_shuffle=1,
subband=1,
ckpt_path=None,
reload_from_ckpt=None,
ignore_keys=[],
colorize_nlabels=None,
monitor=None,
base_learning_rate=1e-5,
scale_factor=1
):
super().__init__()
self.encoder = Encoder(**ddconfig)
self.decoder = Decoder(**ddconfig)
self.subband = int(subband)
if self.subband > 1:
print("Use subband decomposition %s" % self.subband)
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
self.vocoder = get_vocoder(None, "cpu")
self.embed_dim = embed_dim
if monitor is not None:
self.monitor = monitor
self.time_shuffle = time_shuffle
self.reload_from_ckpt = reload_from_ckpt
self.reloaded = False
self.mean, self.std = None, None
self.scale_factor = scale_factor
def encode(self, x):
# x = self.time_shuffle_operation(x)
x = self.freq_split_subband(x)
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def decode(self, z):
z = self.post_quant_conv(z)
dec = self.decoder(z)
dec = self.freq_merge_subband(dec)
return dec
def decode_to_waveform(self, dec):
dec = dec.squeeze(1).permute(0, 2, 1)
wav_reconstruction = vocoder_infer(dec, self.vocoder)
return wav_reconstruction
def forward(self, input, sample_posterior=True):
posterior = self.encode(input)
if sample_posterior:
z = posterior.sample()
else:
z = posterior.mode()
if self.flag_first_run:
print("Latent size: ", z.size())
self.flag_first_run = False
dec = self.decode(z)
return dec, posterior
def freq_split_subband(self, fbank):
if self.subband == 1 or self.image_key != "stft":
return fbank
bs, ch, tstep, fbins = fbank.size()
assert fbank.size(-1) % self.subband == 0
assert ch == 1
return (
fbank.squeeze(1)
.reshape(bs, tstep, self.subband, fbins // self.subband)
.permute(0, 2, 1, 3)
)
def freq_merge_subband(self, subband_fbank):
if self.subband == 1 or self.image_key != "stft":
return subband_fbank
assert subband_fbank.size(1) == self.subband # Channel dimension
bs, sub_ch, tstep, fbins = subband_fbank.size()
return subband_fbank.permute(0, 2, 1, 3).reshape(bs, tstep, -1).unsqueeze(1)
def device(self):
return next(self.parameters()).device
@torch.no_grad()
def encode_first_stage(self, x):
return self.encode(x)
@torch.no_grad()
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
if predict_cids:
if z.dim() == 4:
z = torch.argmax(z.exp(), dim=1).long()
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
z = rearrange(z, "b h w c -> b c h w").contiguous()
z = 1.0 / self.scale_factor * z
return self.decode(z)
def get_first_stage_encoding(self, encoder_posterior):
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
else:
raise NotImplementedError(
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
)
return self.scale_factor * z |