File size: 11,810 Bytes
ffead1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest

from diffusers.models.unet_2d_blocks import *  # noqa F403
from diffusers.utils import torch_device

from .test_unet_blocks_common import UNetBlockTesterMixin


class DownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = DownBlock2D  # noqa F405
    block_type = "down"

    def test_output(self):
        expected_slice = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904]
        super().test_output(expected_slice)


class ResnetDownsampleBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = ResnetDownsampleBlock2D  # noqa F405
    block_type = "down"

    def test_output(self):
        expected_slice = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948]
        super().test_output(expected_slice)


class AttnDownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = AttnDownBlock2D  # noqa F405
    block_type = "down"

    def test_output(self):
        expected_slice = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957]
        super().test_output(expected_slice)


class CrossAttnDownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = CrossAttnDownBlock2D  # noqa F405
    block_type = "down"

    def prepare_init_args_and_inputs_for_common(self):
        init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
        init_dict["cross_attention_dim"] = 32
        return init_dict, inputs_dict

    def test_output(self):
        expected_slice = [0.2440, -0.6953, -0.2140, -0.3874, 0.1966, 1.2077, 0.0441, -0.7718, 0.2800]
        super().test_output(expected_slice)


class SimpleCrossAttnDownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = SimpleCrossAttnDownBlock2D  # noqa F405
    block_type = "down"

    @property
    def dummy_input(self):
        return super().get_dummy_input(include_encoder_hidden_states=True)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
        init_dict["cross_attention_dim"] = 32
        return init_dict, inputs_dict

    @unittest.skipIf(torch_device == "mps", "MPS result is not consistent")
    def test_output(self):
        expected_slice = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338]
        super().test_output(expected_slice)


class SkipDownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = SkipDownBlock2D  # noqa F405
    block_type = "down"

    @property
    def dummy_input(self):
        return super().get_dummy_input(include_skip_sample=True)

    def test_output(self):
        expected_slice = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069]
        super().test_output(expected_slice)


class AttnSkipDownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = AttnSkipDownBlock2D  # noqa F405
    block_type = "down"

    @property
    def dummy_input(self):
        return super().get_dummy_input(include_skip_sample=True)

    def test_output(self):
        expected_slice = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642]
        super().test_output(expected_slice)


class DownEncoderBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = DownEncoderBlock2D  # noqa F405
    block_type = "down"

    @property
    def dummy_input(self):
        return super().get_dummy_input(include_temb=False)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "in_channels": 32,
            "out_channels": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        expected_slice = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626]
        super().test_output(expected_slice)


class AttnDownEncoderBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = AttnDownEncoderBlock2D  # noqa F405
    block_type = "down"

    @property
    def dummy_input(self):
        return super().get_dummy_input(include_temb=False)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "in_channels": 32,
            "out_channels": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        expected_slice = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538]
        super().test_output(expected_slice)


class UNetMidBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = UNetMidBlock2D  # noqa F405
    block_type = "mid"

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "in_channels": 32,
            "temb_channels": 128,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        expected_slice = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028]
        super().test_output(expected_slice)


class UNetMidBlock2DCrossAttnTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = UNetMidBlock2DCrossAttn  # noqa F405
    block_type = "mid"

    def prepare_init_args_and_inputs_for_common(self):
        init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
        init_dict["cross_attention_dim"] = 32
        return init_dict, inputs_dict

    def test_output(self):
        expected_slice = [0.1879, 2.2653, 0.5987, 1.1568, -0.8454, -1.6109, -0.8919, 0.8306, 1.6758]
        super().test_output(expected_slice)


class UNetMidBlock2DSimpleCrossAttnTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = UNetMidBlock2DSimpleCrossAttn  # noqa F405
    block_type = "mid"

    @property
    def dummy_input(self):
        return super().get_dummy_input(include_encoder_hidden_states=True)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
        init_dict["cross_attention_dim"] = 32
        return init_dict, inputs_dict

    def test_output(self):
        expected_slice = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880]
        super().test_output(expected_slice)


class UpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = UpBlock2D  # noqa F405
    block_type = "up"

    @property
    def dummy_input(self):
        return super().get_dummy_input(include_res_hidden_states_tuple=True)

    def test_output(self):
        expected_slice = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523]
        super().test_output(expected_slice)


class ResnetUpsampleBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = ResnetUpsampleBlock2D  # noqa F405
    block_type = "up"

    @property
    def dummy_input(self):
        return super().get_dummy_input(include_res_hidden_states_tuple=True)

    def test_output(self):
        expected_slice = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244]
        super().test_output(expected_slice)


class CrossAttnUpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = CrossAttnUpBlock2D  # noqa F405
    block_type = "up"

    @property
    def dummy_input(self):
        return super().get_dummy_input(include_res_hidden_states_tuple=True)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
        init_dict["cross_attention_dim"] = 32
        return init_dict, inputs_dict

    def test_output(self):
        expected_slice = [-0.2796, -0.4364, -0.1067, -0.2693, 0.1894, 0.3869, -0.3470, 0.4584, 0.5091]
        super().test_output(expected_slice)


class SimpleCrossAttnUpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = SimpleCrossAttnUpBlock2D  # noqa F405
    block_type = "up"

    @property
    def dummy_input(self):
        return super().get_dummy_input(include_res_hidden_states_tuple=True, include_encoder_hidden_states=True)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
        init_dict["cross_attention_dim"] = 32
        return init_dict, inputs_dict

    def test_output(self):
        expected_slice = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402]
        super().test_output(expected_slice)


class AttnUpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = AttnUpBlock2D  # noqa F405
    block_type = "up"

    @property
    def dummy_input(self):
        return super().get_dummy_input(include_res_hidden_states_tuple=True)

    @unittest.skipIf(torch_device == "mps", "MPS result is not consistent")
    def test_output(self):
        expected_slice = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033]
        super().test_output(expected_slice)


class SkipUpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = SkipUpBlock2D  # noqa F405
    block_type = "up"

    @property
    def dummy_input(self):
        return super().get_dummy_input(include_res_hidden_states_tuple=True)

    def test_output(self):
        expected_slice = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362]
        super().test_output(expected_slice)


class AttnSkipUpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = AttnSkipUpBlock2D  # noqa F405
    block_type = "up"

    @property
    def dummy_input(self):
        return super().get_dummy_input(include_res_hidden_states_tuple=True)

    def test_output(self):
        expected_slice = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015]
        super().test_output(expected_slice)


class UpDecoderBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = UpDecoderBlock2D  # noqa F405
    block_type = "up"

    @property
    def dummy_input(self):
        return super().get_dummy_input(include_temb=False)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {"in_channels": 32, "out_channels": 32}

        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        expected_slice = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137]
        super().test_output(expected_slice)


class AttnUpDecoderBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
    block_class = AttnUpDecoderBlock2D  # noqa F405
    block_type = "up"

    @property
    def dummy_input(self):
        return super().get_dummy_input(include_temb=False)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {"in_channels": 32, "out_channels": 32}

        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        expected_slice = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568]
        super().test_output(expected_slice)