File size: 4,686 Bytes
fd43906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/python3
import os
from audioldm import text_to_audio, style_transfer, build_model, save_wave, get_time, round_up_duration, get_duration
import argparse

CACHE_DIR = os.getenv(
    "AUDIOLDM_CACHE_DIR",
    os.path.join(os.path.expanduser("~"), ".cache/audioldm"))

parser = argparse.ArgumentParser()

parser.add_argument(
    "--mode",
    type=str,
    required=False,
    default="generation",
    help="generation: text-to-audio generation; transfer: style transfer",
    choices=["generation", "transfer"]
)

parser.add_argument(
    "-t",
    "--text",
    type=str,
    required=False,
    default="",
    help="Text prompt to the model for audio generation",
)

parser.add_argument(
    "-f",
    "--file_path",
    type=str,
    required=False,
    default=None,
    help="(--mode transfer): Original audio file for style transfer; Or (--mode generation): the guidance audio file for generating simialr audio",
)

parser.add_argument(
    "--transfer_strength",
    type=float,
    required=False,
    default=0.5,
    help="A value between 0 and 1. 0 means original audio without transfer, 1 means completely transfer to the audio indicated by text",
)

parser.add_argument(
    "-s",
    "--save_path",
    type=str,
    required=False,
    help="The path to save model output",
    default="./output",
)

parser.add_argument(
    "--model_name",
    type=str,
    required=False,
    help="The checkpoint you gonna use",
    default="audioldm-s-full",
    choices=["audioldm-s-full", "audioldm-l-full", "audioldm-s-full-v2"]
)

parser.add_argument(
    "-ckpt",
    "--ckpt_path",
    type=str,
    required=False,
    help="The path to the pretrained .ckpt model",
    default=None,
)

parser.add_argument(
    "-b",
    "--batchsize",
    type=int,
    required=False,
    default=1,
    help="Generate how many samples at the same time",
)

parser.add_argument(
    "--ddim_steps",
    type=int,
    required=False,
    default=200,
    help="The sampling step for DDIM",
)

parser.add_argument(
    "-gs",
    "--guidance_scale",
    type=float,
    required=False,
    default=2.5,
    help="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)",
)

parser.add_argument(
    "-dur",
    "--duration",
    type=float,
    required=False,
    default=10.0,
    help="The duration of the samples",
)

parser.add_argument(
    "-n",
    "--n_candidate_gen_per_text",
    type=int,
    required=False,
    default=3,
    help="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation",
)

parser.add_argument(
    "--seed",
    type=int,
    required=False,
    default=42,
    help="Change this value (any integer number) will lead to a different generation result.",
)

args = parser.parse_args()

if(args.ckpt_path is not None):
    print("Warning: ckpt_path has no effect after version 0.0.20.")
    
assert args.duration % 2.5 == 0, "Duration must be a multiple of 2.5"

mode = args.mode
if(mode == "generation" and args.file_path is not None):
    mode = "generation_audio_to_audio"
    if(len(args.text) > 0):
        print("Warning: You have specified the --file_path. --text will be ignored")
        args.text = ""
        
save_path = os.path.join(args.save_path, mode)

if(args.file_path is not None):
    save_path = os.path.join(save_path, os.path.basename(args.file_path.split(".")[0]))

text = args.text
random_seed = args.seed
duration = args.duration
guidance_scale = args.guidance_scale
n_candidate_gen_per_text = args.n_candidate_gen_per_text

os.makedirs(save_path, exist_ok=True)
audioldm = build_model(model_name=args.model_name)

if(args.mode == "generation"):
    waveform = text_to_audio(
        audioldm,
        text,
        args.file_path,
        random_seed,
        duration=duration,
        guidance_scale=guidance_scale,
        ddim_steps=args.ddim_steps,
        n_candidate_gen_per_text=n_candidate_gen_per_text,
        batchsize=args.batchsize,
    )
    
elif(args.mode == "transfer"):
    assert args.file_path is not None
    assert os.path.exists(args.file_path), "The original audio file \'%s\' for style transfer does not exist." % args.file_path
    waveform = style_transfer(
        audioldm,
        text,
        args.file_path,
        args.transfer_strength,
        random_seed,
        duration=duration,
        guidance_scale=guidance_scale,
        ddim_steps=args.ddim_steps,
        batchsize=args.batchsize,
    )
    waveform = waveform[:,None,:]

save_wave(waveform, save_path, name="%s_%s" % (get_time(), text))