Spaces:
				
			
			
	
			
			
		Configuration error
		
	
	
	
			
			
	
	
	
	
		
		
		Configuration error
		
	File size: 6,586 Bytes
			
			| fd43906 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | import argparse
import os
import torch
from torchvision.datasets.utils import download_url
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, Transformer2DModel
pretrained_models = {512: "DiT-XL-2-512x512.pt", 256: "DiT-XL-2-256x256.pt"}
def download_model(model_name):
    """
    Downloads a pre-trained DiT model from the web.
    """
    local_path = f"pretrained_models/{model_name}"
    if not os.path.isfile(local_path):
        os.makedirs("pretrained_models", exist_ok=True)
        web_path = f"https://dl.fbaipublicfiles.com/DiT/models/{model_name}"
        download_url(web_path, "pretrained_models")
    model = torch.load(local_path, map_location=lambda storage, loc: storage)
    return model
def main(args):
    state_dict = download_model(pretrained_models[args.image_size])
    state_dict["pos_embed.proj.weight"] = state_dict["x_embedder.proj.weight"]
    state_dict["pos_embed.proj.bias"] = state_dict["x_embedder.proj.bias"]
    state_dict.pop("x_embedder.proj.weight")
    state_dict.pop("x_embedder.proj.bias")
    for depth in range(28):
        state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_1.weight"] = state_dict[
            "t_embedder.mlp.0.weight"
        ]
        state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_1.bias"] = state_dict[
            "t_embedder.mlp.0.bias"
        ]
        state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_2.weight"] = state_dict[
            "t_embedder.mlp.2.weight"
        ]
        state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_2.bias"] = state_dict[
            "t_embedder.mlp.2.bias"
        ]
        state_dict[f"transformer_blocks.{depth}.norm1.emb.class_embedder.embedding_table.weight"] = state_dict[
            "y_embedder.embedding_table.weight"
        ]
        state_dict[f"transformer_blocks.{depth}.norm1.linear.weight"] = state_dict[
            f"blocks.{depth}.adaLN_modulation.1.weight"
        ]
        state_dict[f"transformer_blocks.{depth}.norm1.linear.bias"] = state_dict[
            f"blocks.{depth}.adaLN_modulation.1.bias"
        ]
        q, k, v = torch.chunk(state_dict[f"blocks.{depth}.attn.qkv.weight"], 3, dim=0)
        q_bias, k_bias, v_bias = torch.chunk(state_dict[f"blocks.{depth}.attn.qkv.bias"], 3, dim=0)
        state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
        state_dict[f"transformer_blocks.{depth}.attn1.to_q.bias"] = q_bias
        state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
        state_dict[f"transformer_blocks.{depth}.attn1.to_k.bias"] = k_bias
        state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
        state_dict[f"transformer_blocks.{depth}.attn1.to_v.bias"] = v_bias
        state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict[
            f"blocks.{depth}.attn.proj.weight"
        ]
        state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict[f"blocks.{depth}.attn.proj.bias"]
        state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.weight"] = state_dict[f"blocks.{depth}.mlp.fc1.weight"]
        state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.bias"] = state_dict[f"blocks.{depth}.mlp.fc1.bias"]
        state_dict[f"transformer_blocks.{depth}.ff.net.2.weight"] = state_dict[f"blocks.{depth}.mlp.fc2.weight"]
        state_dict[f"transformer_blocks.{depth}.ff.net.2.bias"] = state_dict[f"blocks.{depth}.mlp.fc2.bias"]
        state_dict.pop(f"blocks.{depth}.attn.qkv.weight")
        state_dict.pop(f"blocks.{depth}.attn.qkv.bias")
        state_dict.pop(f"blocks.{depth}.attn.proj.weight")
        state_dict.pop(f"blocks.{depth}.attn.proj.bias")
        state_dict.pop(f"blocks.{depth}.mlp.fc1.weight")
        state_dict.pop(f"blocks.{depth}.mlp.fc1.bias")
        state_dict.pop(f"blocks.{depth}.mlp.fc2.weight")
        state_dict.pop(f"blocks.{depth}.mlp.fc2.bias")
        state_dict.pop(f"blocks.{depth}.adaLN_modulation.1.weight")
        state_dict.pop(f"blocks.{depth}.adaLN_modulation.1.bias")
    state_dict.pop("t_embedder.mlp.0.weight")
    state_dict.pop("t_embedder.mlp.0.bias")
    state_dict.pop("t_embedder.mlp.2.weight")
    state_dict.pop("t_embedder.mlp.2.bias")
    state_dict.pop("y_embedder.embedding_table.weight")
    state_dict["proj_out_1.weight"] = state_dict["final_layer.adaLN_modulation.1.weight"]
    state_dict["proj_out_1.bias"] = state_dict["final_layer.adaLN_modulation.1.bias"]
    state_dict["proj_out_2.weight"] = state_dict["final_layer.linear.weight"]
    state_dict["proj_out_2.bias"] = state_dict["final_layer.linear.bias"]
    state_dict.pop("final_layer.linear.weight")
    state_dict.pop("final_layer.linear.bias")
    state_dict.pop("final_layer.adaLN_modulation.1.weight")
    state_dict.pop("final_layer.adaLN_modulation.1.bias")
    # DiT XL/2
    transformer = Transformer2DModel(
        sample_size=args.image_size // 8,
        num_layers=28,
        attention_head_dim=72,
        in_channels=4,
        out_channels=8,
        patch_size=2,
        attention_bias=True,
        num_attention_heads=16,
        activation_fn="gelu-approximate",
        num_embeds_ada_norm=1000,
        norm_type="ada_norm_zero",
        norm_elementwise_affine=False,
    )
    transformer.load_state_dict(state_dict, strict=True)
    scheduler = DDIMScheduler(
        num_train_timesteps=1000,
        beta_schedule="linear",
        prediction_type="epsilon",
        clip_sample=False,
    )
    vae = AutoencoderKL.from_pretrained(args.vae_model)
    pipeline = DiTPipeline(transformer=transformer, vae=vae, scheduler=scheduler)
    if args.save:
        pipeline.save_pretrained(args.checkpoint_path)
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--image_size",
        default=256,
        type=int,
        required=False,
        help="Image size of pretrained model, either 256 or 512.",
    )
    parser.add_argument(
        "--vae_model",
        default="stabilityai/sd-vae-ft-ema",
        type=str,
        required=False,
        help="Path to pretrained VAE model, either stabilityai/sd-vae-ft-mse or stabilityai/sd-vae-ft-ema.",
    )
    parser.add_argument(
        "--save", default=True, type=bool, required=False, help="Whether to save the converted pipeline or not."
    )
    parser.add_argument(
        "--checkpoint_path", default=None, type=str, required=True, help="Path to the output pipeline."
    )
    args = parser.parse_args()
    main(args)
 | 
