Spaces:
Runtime error
Runtime error
File size: 25,670 Bytes
fd43906 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
import argparse
import logging
import math
import os
import random
from pathlib import Path
import jax
import jax.numpy as jnp
import numpy as np
import optax
import PIL
import torch
import torch.utils.checkpoint
import transformers
from flax import jax_utils
from flax.training import train_state
from flax.training.common_utils import shard
from huggingface_hub import create_repo, upload_folder
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel, set_seed
from diffusers import (
FlaxAutoencoderKL,
FlaxDDPMScheduler,
FlaxPNDMScheduler,
FlaxStableDiffusionPipeline,
FlaxUNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
from diffusers.utils import check_min_version
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
PIL_INTERPOLATION = {
"linear": PIL.Image.Resampling.BILINEAR,
"bilinear": PIL.Image.Resampling.BILINEAR,
"bicubic": PIL.Image.Resampling.BICUBIC,
"lanczos": PIL.Image.Resampling.LANCZOS,
"nearest": PIL.Image.Resampling.NEAREST,
}
else:
PIL_INTERPOLATION = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"nearest": PIL.Image.NEAREST,
}
# ------------------------------------------------------------------------------
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.15.0.dev0")
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data."
)
parser.add_argument(
"--placeholder_token",
type=str,
default=None,
required=True,
help="A token to use as a placeholder for the concept.",
)
parser.add_argument(
"--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word."
)
parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'")
parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.")
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution."
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=5000,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--save_steps",
type=int,
default=500,
help="Save learned_embeds.bin every X updates steps.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=True,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--use_auth_token",
action="store_true",
help=(
"Will use the token generated when running `huggingface-cli login` (necessary to use this script with"
" private models)."
),
)
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.train_data_dir is None:
raise ValueError("You must specify a train data directory.")
return args
imagenet_templates_small = [
"a photo of a {}",
"a rendering of a {}",
"a cropped photo of the {}",
"the photo of a {}",
"a photo of a clean {}",
"a photo of a dirty {}",
"a dark photo of the {}",
"a photo of my {}",
"a photo of the cool {}",
"a close-up photo of a {}",
"a bright photo of the {}",
"a cropped photo of a {}",
"a photo of the {}",
"a good photo of the {}",
"a photo of one {}",
"a close-up photo of the {}",
"a rendition of the {}",
"a photo of the clean {}",
"a rendition of a {}",
"a photo of a nice {}",
"a good photo of a {}",
"a photo of the nice {}",
"a photo of the small {}",
"a photo of the weird {}",
"a photo of the large {}",
"a photo of a cool {}",
"a photo of a small {}",
]
imagenet_style_templates_small = [
"a painting in the style of {}",
"a rendering in the style of {}",
"a cropped painting in the style of {}",
"the painting in the style of {}",
"a clean painting in the style of {}",
"a dirty painting in the style of {}",
"a dark painting in the style of {}",
"a picture in the style of {}",
"a cool painting in the style of {}",
"a close-up painting in the style of {}",
"a bright painting in the style of {}",
"a cropped painting in the style of {}",
"a good painting in the style of {}",
"a close-up painting in the style of {}",
"a rendition in the style of {}",
"a nice painting in the style of {}",
"a small painting in the style of {}",
"a weird painting in the style of {}",
"a large painting in the style of {}",
]
class TextualInversionDataset(Dataset):
def __init__(
self,
data_root,
tokenizer,
learnable_property="object", # [object, style]
size=512,
repeats=100,
interpolation="bicubic",
flip_p=0.5,
set="train",
placeholder_token="*",
center_crop=False,
):
self.data_root = data_root
self.tokenizer = tokenizer
self.learnable_property = learnable_property
self.size = size
self.placeholder_token = placeholder_token
self.center_crop = center_crop
self.flip_p = flip_p
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
self.num_images = len(self.image_paths)
self._length = self.num_images
if set == "train":
self._length = self.num_images * repeats
self.interpolation = {
"linear": PIL_INTERPOLATION["linear"],
"bilinear": PIL_INTERPOLATION["bilinear"],
"bicubic": PIL_INTERPOLATION["bicubic"],
"lanczos": PIL_INTERPOLATION["lanczos"],
}[interpolation]
self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == "RGB":
image = image.convert("RGB")
placeholder_string = self.placeholder_token
text = random.choice(self.templates).format(placeholder_string)
example["input_ids"] = self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids[0]
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
(
h,
w,
) = (
img.shape[0],
img.shape[1],
)
img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2]
image = Image.fromarray(img)
image = image.resize((self.size, self.size), resample=self.interpolation)
image = self.flip_transform(image)
image = np.array(image).astype(np.uint8)
image = (image / 127.5 - 1.0).astype(np.float32)
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
return example
def resize_token_embeddings(model, new_num_tokens, initializer_token_id, placeholder_token_id, rng):
if model.config.vocab_size == new_num_tokens or new_num_tokens is None:
return
model.config.vocab_size = new_num_tokens
params = model.params
old_embeddings = params["text_model"]["embeddings"]["token_embedding"]["embedding"]
old_num_tokens, emb_dim = old_embeddings.shape
initializer = jax.nn.initializers.normal()
new_embeddings = initializer(rng, (new_num_tokens, emb_dim))
new_embeddings = new_embeddings.at[:old_num_tokens].set(old_embeddings)
new_embeddings = new_embeddings.at[placeholder_token_id].set(new_embeddings[initializer_token_id])
params["text_model"]["embeddings"]["token_embedding"]["embedding"] = new_embeddings
model.params = params
return model
def get_params_to_save(params):
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))
def main():
args = parse_args()
if args.seed is not None:
set_seed(args.seed)
if jax.process_index() == 0:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.push_to_hub:
repo_id = create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
).repo_id
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
transformers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
# Load the tokenizer and add the placeholder token as a additional special token
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
# Add the placeholder token in tokenizer
num_added_tokens = tokenizer.add_tokens(args.placeholder_token)
if num_added_tokens == 0:
raise ValueError(
f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
" `placeholder_token` that is not already in the tokenizer."
)
# Convert the initializer_token, placeholder_token to ids
token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
# Check if initializer_token is a single token or a sequence of tokens
if len(token_ids) > 1:
raise ValueError("The initializer token must be a single token.")
initializer_token_id = token_ids[0]
placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token)
# Load models and create wrapper for stable diffusion
text_encoder = FlaxCLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
)
vae, vae_params = FlaxAutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision
)
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
)
# Create sampling rng
rng = jax.random.PRNGKey(args.seed)
rng, _ = jax.random.split(rng)
# Resize the token embeddings as we are adding new special tokens to the tokenizer
text_encoder = resize_token_embeddings(
text_encoder, len(tokenizer), initializer_token_id, placeholder_token_id, rng
)
original_token_embeds = text_encoder.params["text_model"]["embeddings"]["token_embedding"]["embedding"]
train_dataset = TextualInversionDataset(
data_root=args.train_data_dir,
tokenizer=tokenizer,
size=args.resolution,
placeholder_token=args.placeholder_token,
repeats=args.repeats,
learnable_property=args.learnable_property,
center_crop=args.center_crop,
set="train",
)
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
input_ids = torch.stack([example["input_ids"] for example in examples])
batch = {"pixel_values": pixel_values, "input_ids": input_ids}
batch = {k: v.numpy() for k, v in batch.items()}
return batch
total_train_batch_size = args.train_batch_size * jax.local_device_count()
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=total_train_batch_size, shuffle=True, drop_last=True, collate_fn=collate_fn
)
# Optimization
if args.scale_lr:
args.learning_rate = args.learning_rate * total_train_batch_size
constant_scheduler = optax.constant_schedule(args.learning_rate)
optimizer = optax.adamw(
learning_rate=constant_scheduler,
b1=args.adam_beta1,
b2=args.adam_beta2,
eps=args.adam_epsilon,
weight_decay=args.adam_weight_decay,
)
def create_mask(params, label_fn):
def _map(params, mask, label_fn):
for k in params:
if label_fn(k):
mask[k] = "token_embedding"
else:
if isinstance(params[k], dict):
mask[k] = {}
_map(params[k], mask[k], label_fn)
else:
mask[k] = "zero"
mask = {}
_map(params, mask, label_fn)
return mask
def zero_grads():
# from https://github.com/deepmind/optax/issues/159#issuecomment-896459491
def init_fn(_):
return ()
def update_fn(updates, state, params=None):
return jax.tree_util.tree_map(jnp.zeros_like, updates), ()
return optax.GradientTransformation(init_fn, update_fn)
# Zero out gradients of layers other than the token embedding layer
tx = optax.multi_transform(
{"token_embedding": optimizer, "zero": zero_grads()},
create_mask(text_encoder.params, lambda s: s == "token_embedding"),
)
state = train_state.TrainState.create(apply_fn=text_encoder.__call__, params=text_encoder.params, tx=tx)
noise_scheduler = FlaxDDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
)
noise_scheduler_state = noise_scheduler.create_state()
# Initialize our training
train_rngs = jax.random.split(rng, jax.local_device_count())
# Define gradient train step fn
def train_step(state, vae_params, unet_params, batch, train_rng):
dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3)
def compute_loss(params):
vae_outputs = vae.apply(
{"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode
)
latents = vae_outputs.latent_dist.sample(sample_rng)
# (NHWC) -> (NCHW)
latents = jnp.transpose(latents, (0, 3, 1, 2))
latents = latents * vae.config.scaling_factor
noise_rng, timestep_rng = jax.random.split(sample_rng)
noise = jax.random.normal(noise_rng, latents.shape)
bsz = latents.shape[0]
timesteps = jax.random.randint(
timestep_rng,
(bsz,),
0,
noise_scheduler.config.num_train_timesteps,
)
noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps)
encoder_hidden_states = state.apply_fn(
batch["input_ids"], params=params, dropout_rng=dropout_rng, train=True
)[0]
# Predict the noise residual and compute loss
model_pred = unet.apply(
{"params": unet_params}, noisy_latents, timesteps, encoder_hidden_states, train=False
).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
loss = (target - model_pred) ** 2
loss = loss.mean()
return loss
grad_fn = jax.value_and_grad(compute_loss)
loss, grad = grad_fn(state.params)
grad = jax.lax.pmean(grad, "batch")
new_state = state.apply_gradients(grads=grad)
# Keep the token embeddings fixed except the newly added embeddings for the concept,
# as we only want to optimize the concept embeddings
token_embeds = original_token_embeds.at[placeholder_token_id].set(
new_state.params["text_model"]["embeddings"]["token_embedding"]["embedding"][placeholder_token_id]
)
new_state.params["text_model"]["embeddings"]["token_embedding"]["embedding"] = token_embeds
metrics = {"loss": loss}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return new_state, metrics, new_train_rng
# Create parallel version of the train and eval step
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
# Replicate the train state on each device
state = jax_utils.replicate(state)
vae_params = jax_utils.replicate(vae_params)
unet_params = jax_utils.replicate(unet_params)
# Train!
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
# Scheduler and math around the number of training steps.
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
epochs = tqdm(range(args.num_train_epochs), desc=f"Epoch ... (1/{args.num_train_epochs})", position=0)
for epoch in epochs:
# ======================== Training ================================
train_metrics = []
steps_per_epoch = len(train_dataset) // total_train_batch_size
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
# train
for batch in train_dataloader:
batch = shard(batch)
state, train_metric, train_rngs = p_train_step(state, vae_params, unet_params, batch, train_rngs)
train_metrics.append(train_metric)
train_step_progress_bar.update(1)
global_step += 1
if global_step >= args.max_train_steps:
break
if global_step % args.save_steps == 0:
learned_embeds = get_params_to_save(state.params)["text_model"]["embeddings"]["token_embedding"][
"embedding"
][placeholder_token_id]
learned_embeds_dict = {args.placeholder_token: learned_embeds}
jnp.save(
os.path.join(args.output_dir, "learned_embeds-" + str(global_step) + ".npy"), learned_embeds_dict
)
train_metric = jax_utils.unreplicate(train_metric)
train_step_progress_bar.close()
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")
# Create the pipeline using using the trained modules and save it.
if jax.process_index() == 0:
scheduler = FlaxPNDMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True
)
safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker", from_pt=True
)
pipeline = FlaxStableDiffusionPipeline(
text_encoder=text_encoder,
vae=vae,
unet=unet,
tokenizer=tokenizer,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"),
)
pipeline.save_pretrained(
args.output_dir,
params={
"text_encoder": get_params_to_save(state.params),
"vae": get_params_to_save(vae_params),
"unet": get_params_to_save(unet_params),
"safety_checker": safety_checker.params,
},
)
# Also save the newly trained embeddings
learned_embeds = get_params_to_save(state.params)["text_model"]["embeddings"]["token_embedding"]["embedding"][
placeholder_token_id
]
learned_embeds_dict = {args.placeholder_token: learned_embeds}
jnp.save(os.path.join(args.output_dir, "learned_embeds.npy"), learned_embeds_dict)
if args.push_to_hub:
upload_folder(
repo_id=repo_id,
folder_path=args.output_dir,
commit_message="End of training",
ignore_patterns=["step_*", "epoch_*"],
)
if __name__ == "__main__":
main()
|