Spaces:
Running
on
A10G
Running
on
A10G
File size: 11,810 Bytes
f1069cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from diffusers.models.unet_2d_blocks import * # noqa F403
from diffusers.utils import torch_device
from .test_unet_blocks_common import UNetBlockTesterMixin
class DownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = DownBlock2D # noqa F405
block_type = "down"
def test_output(self):
expected_slice = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904]
super().test_output(expected_slice)
class ResnetDownsampleBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = ResnetDownsampleBlock2D # noqa F405
block_type = "down"
def test_output(self):
expected_slice = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948]
super().test_output(expected_slice)
class AttnDownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = AttnDownBlock2D # noqa F405
block_type = "down"
def test_output(self):
expected_slice = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957]
super().test_output(expected_slice)
class CrossAttnDownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = CrossAttnDownBlock2D # noqa F405
block_type = "down"
def prepare_init_args_and_inputs_for_common(self):
init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = 32
return init_dict, inputs_dict
def test_output(self):
expected_slice = [0.2440, -0.6953, -0.2140, -0.3874, 0.1966, 1.2077, 0.0441, -0.7718, 0.2800]
super().test_output(expected_slice)
class SimpleCrossAttnDownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = SimpleCrossAttnDownBlock2D # noqa F405
block_type = "down"
@property
def dummy_input(self):
return super().get_dummy_input(include_encoder_hidden_states=True)
def prepare_init_args_and_inputs_for_common(self):
init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = 32
return init_dict, inputs_dict
@unittest.skipIf(torch_device == "mps", "MPS result is not consistent")
def test_output(self):
expected_slice = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338]
super().test_output(expected_slice)
class SkipDownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = SkipDownBlock2D # noqa F405
block_type = "down"
@property
def dummy_input(self):
return super().get_dummy_input(include_skip_sample=True)
def test_output(self):
expected_slice = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069]
super().test_output(expected_slice)
class AttnSkipDownBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = AttnSkipDownBlock2D # noqa F405
block_type = "down"
@property
def dummy_input(self):
return super().get_dummy_input(include_skip_sample=True)
def test_output(self):
expected_slice = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642]
super().test_output(expected_slice)
class DownEncoderBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = DownEncoderBlock2D # noqa F405
block_type = "down"
@property
def dummy_input(self):
return super().get_dummy_input(include_temb=False)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 32,
"out_channels": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_output(self):
expected_slice = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626]
super().test_output(expected_slice)
class AttnDownEncoderBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = AttnDownEncoderBlock2D # noqa F405
block_type = "down"
@property
def dummy_input(self):
return super().get_dummy_input(include_temb=False)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 32,
"out_channels": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_output(self):
expected_slice = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538]
super().test_output(expected_slice)
class UNetMidBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = UNetMidBlock2D # noqa F405
block_type = "mid"
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 32,
"temb_channels": 128,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_output(self):
expected_slice = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028]
super().test_output(expected_slice)
class UNetMidBlock2DCrossAttnTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = UNetMidBlock2DCrossAttn # noqa F405
block_type = "mid"
def prepare_init_args_and_inputs_for_common(self):
init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = 32
return init_dict, inputs_dict
def test_output(self):
expected_slice = [0.1879, 2.2653, 0.5987, 1.1568, -0.8454, -1.6109, -0.8919, 0.8306, 1.6758]
super().test_output(expected_slice)
class UNetMidBlock2DSimpleCrossAttnTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = UNetMidBlock2DSimpleCrossAttn # noqa F405
block_type = "mid"
@property
def dummy_input(self):
return super().get_dummy_input(include_encoder_hidden_states=True)
def prepare_init_args_and_inputs_for_common(self):
init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = 32
return init_dict, inputs_dict
def test_output(self):
expected_slice = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880]
super().test_output(expected_slice)
class UpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = UpBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_res_hidden_states_tuple=True)
def test_output(self):
expected_slice = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523]
super().test_output(expected_slice)
class ResnetUpsampleBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = ResnetUpsampleBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_res_hidden_states_tuple=True)
def test_output(self):
expected_slice = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244]
super().test_output(expected_slice)
class CrossAttnUpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = CrossAttnUpBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_res_hidden_states_tuple=True)
def prepare_init_args_and_inputs_for_common(self):
init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = 32
return init_dict, inputs_dict
def test_output(self):
expected_slice = [-0.2796, -0.4364, -0.1067, -0.2693, 0.1894, 0.3869, -0.3470, 0.4584, 0.5091]
super().test_output(expected_slice)
class SimpleCrossAttnUpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = SimpleCrossAttnUpBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_res_hidden_states_tuple=True, include_encoder_hidden_states=True)
def prepare_init_args_and_inputs_for_common(self):
init_dict, inputs_dict = super().prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = 32
return init_dict, inputs_dict
def test_output(self):
expected_slice = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402]
super().test_output(expected_slice)
class AttnUpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = AttnUpBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_res_hidden_states_tuple=True)
@unittest.skipIf(torch_device == "mps", "MPS result is not consistent")
def test_output(self):
expected_slice = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033]
super().test_output(expected_slice)
class SkipUpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = SkipUpBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_res_hidden_states_tuple=True)
def test_output(self):
expected_slice = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362]
super().test_output(expected_slice)
class AttnSkipUpBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = AttnSkipUpBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_res_hidden_states_tuple=True)
def test_output(self):
expected_slice = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015]
super().test_output(expected_slice)
class UpDecoderBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = UpDecoderBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_temb=False)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {"in_channels": 32, "out_channels": 32}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_output(self):
expected_slice = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137]
super().test_output(expected_slice)
class AttnUpDecoderBlock2DTests(UNetBlockTesterMixin, unittest.TestCase):
block_class = AttnUpDecoderBlock2D # noqa F405
block_type = "up"
@property
def dummy_input(self):
return super().get_dummy_input(include_temb=False)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {"in_channels": 32, "out_channels": 32}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_output(self):
expected_slice = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568]
super().test_output(expected_slice)
|