File size: 8,090 Bytes
f1069cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import gc
import unittest

import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    DDPMScheduler,
    PriorTransformer,
    StableUnCLIPPipeline,
    UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import load_numpy, require_torch_gpu, slow, torch_device

from ...pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ...test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference


class StableUnCLIPPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = StableUnCLIPPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS

    # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
    test_xformers_attention = False

    def get_dummy_components(self):
        embedder_hidden_size = 32
        embedder_projection_dim = embedder_hidden_size

        # prior components

        torch.manual_seed(0)
        prior_tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        torch.manual_seed(0)
        prior_text_encoder = CLIPTextModelWithProjection(
            CLIPTextConfig(
                bos_token_id=0,
                eos_token_id=2,
                hidden_size=embedder_hidden_size,
                projection_dim=embedder_projection_dim,
                intermediate_size=37,
                layer_norm_eps=1e-05,
                num_attention_heads=4,
                num_hidden_layers=5,
                pad_token_id=1,
                vocab_size=1000,
            )
        )

        torch.manual_seed(0)
        prior = PriorTransformer(
            num_attention_heads=2,
            attention_head_dim=12,
            embedding_dim=embedder_projection_dim,
            num_layers=1,
        )

        torch.manual_seed(0)
        prior_scheduler = DDPMScheduler(
            variance_type="fixed_small_log",
            prediction_type="sample",
            num_train_timesteps=1000,
            clip_sample=True,
            clip_sample_range=5.0,
            beta_schedule="squaredcos_cap_v2",
        )

        # regular denoising components

        torch.manual_seed(0)
        image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedder_hidden_size)
        image_noising_scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2")

        torch.manual_seed(0)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        torch.manual_seed(0)
        text_encoder = CLIPTextModel(
            CLIPTextConfig(
                bos_token_id=0,
                eos_token_id=2,
                hidden_size=embedder_hidden_size,
                projection_dim=32,
                intermediate_size=37,
                layer_norm_eps=1e-05,
                num_attention_heads=4,
                num_hidden_layers=5,
                pad_token_id=1,
                vocab_size=1000,
            )
        )

        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
            up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"),
            block_out_channels=(32, 64),
            attention_head_dim=(2, 4),
            class_embed_type="projection",
            # The class embeddings are the noise augmented image embeddings.
            # I.e. the image embeddings concated with the noised embeddings of the same dimension
            projection_class_embeddings_input_dim=embedder_projection_dim * 2,
            cross_attention_dim=embedder_hidden_size,
            layers_per_block=1,
            upcast_attention=True,
            use_linear_projection=True,
        )

        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_schedule="scaled_linear",
            beta_start=0.00085,
            beta_end=0.012,
            prediction_type="v_prediction",
            set_alpha_to_one=False,
            steps_offset=1,
        )

        torch.manual_seed(0)
        vae = AutoencoderKL()

        components = {
            # prior components
            "prior_tokenizer": prior_tokenizer,
            "prior_text_encoder": prior_text_encoder,
            "prior": prior,
            "prior_scheduler": prior_scheduler,
            # image noising components
            "image_normalizer": image_normalizer,
            "image_noising_scheduler": image_noising_scheduler,
            # regular denoising components
            "tokenizer": tokenizer,
            "text_encoder": text_encoder,
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "prior_num_inference_steps": 2,
            "output_type": "numpy",
        }
        return inputs

    # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
    # because UnCLIP GPU undeterminism requires a looser check.
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device == "cpu"

        self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference)

    # Overriding PipelineTesterMixin::test_inference_batch_single_identical
    # because UnCLIP undeterminism requires a looser check.
    def test_inference_batch_single_identical(self):
        test_max_difference = torch_device in ["cpu", "mps"]

        self._test_inference_batch_single_identical(test_max_difference=test_max_difference)


@slow
@require_torch_gpu
class StableUnCLIPPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_stable_unclip(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy"
        )

        pipe = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l", torch_dtype=torch.float16)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        # stable unclip will oom when integration tests are run on a V100,
        # so turn on memory savings
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()

        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe("anime turle", generator=generator, output_type="np")

        image = output.images[0]

        assert image.shape == (768, 768, 3)

        assert_mean_pixel_difference(image, expected_image)

    def test_stable_unclip_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l", torch_dtype=torch.float16)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()

        _ = pipe(
            "anime turtle",
            prior_num_inference_steps=2,
            num_inference_steps=2,
            output_type="np",
        )

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 7 GB is allocated
        assert mem_bytes < 7 * 10**9