Spaces:
Sleeping
Sleeping
File size: 55,708 Bytes
f1069cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import json
import os
import random
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
import numpy as np
import PIL
import requests_mock
import safetensors.torch
import torch
from parameterized import parameterized
from PIL import Image
from requests.exceptions import HTTPError
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMPipeline,
DDIMScheduler,
DDPMPipeline,
DDPMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionPipeline,
UNet2DConditionModel,
UNet2DModel,
UniPCMultistepScheduler,
logging,
)
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from diffusers.utils import (
CONFIG_NAME,
WEIGHTS_NAME,
floats_tensor,
is_flax_available,
nightly,
require_torch_2,
slow,
torch_device,
)
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir, load_numpy, require_compel, require_torch_gpu
torch.backends.cuda.matmul.allow_tf32 = False
class DownloadTests(unittest.TestCase):
def test_one_request_upon_cached(self):
# TODO: For some reason this test fails on MPS where no HEAD call is made.
if torch_device == "mps":
return
with tempfile.TemporaryDirectory() as tmpdirname:
with requests_mock.mock(real_http=True) as m:
DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
download_requests = [r.method for r in m.request_history]
assert download_requests.count("HEAD") == 15, "15 calls to files"
assert download_requests.count("GET") == 17, "15 calls to files + model_info + model_index.json"
assert (
len(download_requests) == 32
), "2 calls per file (15 files) + send_telemetry, model_info and model_index.json"
with requests_mock.mock(real_http=True) as m:
DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
cache_requests = [r.method for r in m.request_history]
assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
assert cache_requests.count("GET") == 1, "model info is only GET"
assert (
len(cache_requests) == 2
), "We should call only `model_info` to check for _commit hash and `send_telemetry`"
def test_download_only_pytorch(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a flax file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
assert not any(f.endswith(".msgpack") for f in files)
# We need to never convert this tiny model to safetensors for this test to pass
assert not any(f.endswith(".safetensors") for f in files)
def test_force_safetensors_error(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
with self.assertRaises(EnvironmentError):
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe-no-safetensors",
safety_checker=None,
cache_dir=tmpdirname,
use_safetensors=True,
)
def test_returned_cached_folder(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
_, local_path = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None, return_cached_folder=True
)
pipe_2 = StableDiffusionPipeline.from_pretrained(local_path)
pipe = pipe.to(torch_device)
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_download_safetensors(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe-safetensors",
safety_checker=None,
cache_dir=tmpdirname,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a pytorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
assert not any(f.endswith(".bin") for f in files)
def test_download_no_safety_checker(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe = pipe.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_load_no_safety_checker_explicit_locally(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe = pipe.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_load_no_safety_checker_default_locally(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
pipe = pipe.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_cached_files_are_used_when_no_internet(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
orig_pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.request", return_value=response_mock):
# Download this model to make sure it's in the cache.
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None, local_files_only=True
)
comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}
for m1, m2 in zip(orig_comps.values(), comps.values()):
for p1, p2 in zip(m1.parameters(), m2.parameters()):
if p1.data.ne(p2.data).sum() > 0:
assert False, "Parameters not the same!"
def test_download_from_variant_folder(self):
for safe_avail in [False, True]:
import diffusers
diffusers.utils.import_utils._safetensors_available = safe_avail
other_format = ".bin" if safe_avail else ".safetensors"
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = StableDiffusionPipeline.download(
"hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname
)
all_root_files = [t[-1] for t in os.walk(tmpdirname)]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a variant file even if we have some here:
# https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
assert not any(f.endswith(other_format) for f in files)
# no variants
assert not any(len(f.split(".")) == 3 for f in files)
diffusers.utils.import_utils._safetensors_available = True
def test_download_variant_all(self):
for safe_avail in [False, True]:
import diffusers
diffusers.utils.import_utils._safetensors_available = safe_avail
other_format = ".bin" if safe_avail else ".safetensors"
this_format = ".safetensors" if safe_avail else ".bin"
variant = "fp16"
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = StableDiffusionPipeline.download(
"hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname, variant=variant
)
all_root_files = [t[-1] for t in os.walk(tmpdirname)]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a non-variant file even if we have some here:
# https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
# unet, vae, text_encoder, safety_checker
assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 4
# all checkpoints should have variant ending
assert not any(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files)
assert not any(f.endswith(other_format) for f in files)
diffusers.utils.import_utils._safetensors_available = True
def test_download_variant_partly(self):
for safe_avail in [False, True]:
import diffusers
diffusers.utils.import_utils._safetensors_available = safe_avail
other_format = ".bin" if safe_avail else ".safetensors"
this_format = ".safetensors" if safe_avail else ".bin"
variant = "no_ema"
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = StableDiffusionPipeline.download(
"hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname, variant=variant
)
all_root_files = [t[-1] for t in os.walk(tmpdirname)]
files = [item for sublist in all_root_files for item in sublist]
unet_files = os.listdir(os.path.join(tmpdirname, "unet"))
# Some of the downloaded files should be a non-variant file, check:
# https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
# only unet has "no_ema" variant
assert f"diffusion_pytorch_model.{variant}{this_format}" in unet_files
assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 1
# vae, safety_checker and text_encoder should have no variant
assert sum(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files) == 3
assert not any(f.endswith(other_format) for f in files)
diffusers.utils.import_utils._safetensors_available = True
def test_download_broken_variant(self):
for safe_avail in [False, True]:
import diffusers
diffusers.utils.import_utils._safetensors_available = safe_avail
# text encoder is missing no variant and "no_ema" variant weights, so the following can't work
for variant in [None, "no_ema"]:
with self.assertRaises(OSError) as error_context:
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/stable-diffusion-broken-variants",
cache_dir=tmpdirname,
variant=variant,
)
assert "Error no file name" in str(error_context.exception)
# text encoder has fp16 variants so we can load it
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = StableDiffusionPipeline.download(
"hf-internal-testing/stable-diffusion-broken-variants", cache_dir=tmpdirname, variant="fp16"
)
all_root_files = [t[-1] for t in os.walk(tmpdirname)]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a non-variant file even if we have some here:
# https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
# only unet has "no_ema" variant
diffusers.utils.import_utils._safetensors_available = True
def test_text_inversion_download(self):
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe = pipe.to(torch_device)
num_tokens = len(pipe.tokenizer)
# single token load local
with tempfile.TemporaryDirectory() as tmpdirname:
ten = {"<*>": torch.ones((32,))}
torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))
pipe.load_textual_inversion(tmpdirname)
token = pipe.tokenizer.convert_tokens_to_ids("<*>")
assert token == num_tokens, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32
assert pipe._maybe_convert_prompt("<*>", pipe.tokenizer) == "<*>"
prompt = "hey <*>"
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
assert out.shape == (1, 128, 128, 3)
# single token load local with weight name
with tempfile.TemporaryDirectory() as tmpdirname:
ten = {"<**>": 2 * torch.ones((1, 32))}
torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))
pipe.load_textual_inversion(tmpdirname, weight_name="learned_embeds.bin")
token = pipe.tokenizer.convert_tokens_to_ids("<**>")
assert token == num_tokens + 1, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
assert pipe._maybe_convert_prompt("<**>", pipe.tokenizer) == "<**>"
prompt = "hey <**>"
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
assert out.shape == (1, 128, 128, 3)
# multi token load
with tempfile.TemporaryDirectory() as tmpdirname:
ten = {"<***>": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])}
torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))
pipe.load_textual_inversion(tmpdirname)
token = pipe.tokenizer.convert_tokens_to_ids("<***>")
token_1 = pipe.tokenizer.convert_tokens_to_ids("<***>_1")
token_2 = pipe.tokenizer.convert_tokens_to_ids("<***>_2")
assert token == num_tokens + 2, "Added token must be at spot `num_tokens`"
assert token_1 == num_tokens + 3, "Added token must be at spot `num_tokens`"
assert token_2 == num_tokens + 4, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
assert pipe._maybe_convert_prompt("<***>", pipe.tokenizer) == "<***><***>_1<***>_2"
prompt = "hey <***>"
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
assert out.shape == (1, 128, 128, 3)
# multi token load a1111
with tempfile.TemporaryDirectory() as tmpdirname:
ten = {
"string_to_param": {
"*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])
},
"name": "<****>",
}
torch.save(ten, os.path.join(tmpdirname, "a1111.bin"))
pipe.load_textual_inversion(tmpdirname, weight_name="a1111.bin")
token = pipe.tokenizer.convert_tokens_to_ids("<****>")
token_1 = pipe.tokenizer.convert_tokens_to_ids("<****>_1")
token_2 = pipe.tokenizer.convert_tokens_to_ids("<****>_2")
assert token == num_tokens + 5, "Added token must be at spot `num_tokens`"
assert token_1 == num_tokens + 6, "Added token must be at spot `num_tokens`"
assert token_2 == num_tokens + 7, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
assert pipe._maybe_convert_prompt("<****>", pipe.tokenizer) == "<****><****>_1<****>_2"
prompt = "hey <****>"
out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
assert out.shape == (1, 128, 128, 3)
class CustomPipelineTests(unittest.TestCase):
def test_load_custom_pipeline(self):
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
)
pipeline = pipeline.to(torch_device)
# NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
# under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
assert pipeline.__class__.__name__ == "CustomPipeline"
def test_load_custom_github(self):
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="main"
)
# make sure that on "main" pipeline gives only ones because of: https://github.com/huggingface/diffusers/pull/1690
with torch.no_grad():
output = pipeline()
assert output.numel() == output.sum()
# hack since Python doesn't like overwriting modules: https://stackoverflow.com/questions/3105801/unload-a-module-in-python
# Could in the future work with hashes instead.
del sys.modules["diffusers_modules.git.one_step_unet"]
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="0.10.2"
)
with torch.no_grad():
output = pipeline()
assert output.numel() != output.sum()
assert pipeline.__class__.__name__ == "UnetSchedulerOneForwardPipeline"
def test_run_custom_pipeline(self):
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")
assert images[0].shape == (1, 32, 32, 3)
# compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
assert output_str == "This is a test"
def test_local_custom_pipeline_repo(self):
local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")
assert pipeline.__class__.__name__ == "CustomLocalPipeline"
assert images[0].shape == (1, 32, 32, 3)
# compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
assert output_str == "This is a local test"
def test_local_custom_pipeline_file(self):
local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")
assert pipeline.__class__.__name__ == "CustomLocalPipeline"
assert images[0].shape == (1, 32, 32, 3)
# compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
assert output_str == "This is a local test"
@slow
@require_torch_gpu
def test_download_from_git(self):
clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
feature_extractor = CLIPImageProcessor.from_pretrained(clip_model_id)
clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
custom_pipeline="clip_guided_stable_diffusion",
clip_model=clip_model,
feature_extractor=feature_extractor,
torch_dtype=torch.float16,
)
pipeline.enable_attention_slicing()
pipeline = pipeline.to(torch_device)
# NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
# https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"
image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
assert image.shape == (512, 512, 3)
class PipelineFastTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
import diffusers
diffusers.utils.import_utils._safetensors_available = True
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
def dummy_uncond_unet(self, sample_size=32):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=sample_size,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
def dummy_cond_unet(self, sample_size=32):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=sample_size,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
@parameterized.expand(
[
[DDIMScheduler, DDIMPipeline, 32],
[DDPMScheduler, DDPMPipeline, 32],
[DDIMScheduler, DDIMPipeline, (32, 64)],
[DDPMScheduler, DDPMPipeline, (64, 32)],
]
)
def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32):
unet = self.dummy_uncond_unet(sample_size)
scheduler = scheduler_fn()
pipeline = pipeline_fn(unet, scheduler).to(torch_device)
generator = torch.manual_seed(0)
out_image = pipeline(
generator=generator,
num_inference_steps=2,
output_type="np",
).images
sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size
assert out_image.shape == (1, *sample_size, 3)
def test_stable_diffusion_components(self):
"""Test that components property works correctly"""
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
# make sure here that pndm scheduler skips prk
inpaint = StableDiffusionInpaintPipelineLegacy(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
).to(torch_device)
img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
image_inpaint = inpaint(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
).images
image_img2img = img2img(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
image=init_image,
).images
image_text2img = text2img(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
).images
assert image_inpaint.shape == (1, 32, 32, 3)
assert image_img2img.shape == (1, 32, 32, 3)
assert image_text2img.shape == (1, 64, 64, 3)
@require_torch_gpu
def test_pipe_false_offload_warn(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd.enable_model_cpu_offload()
logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
with CaptureLogger(logger) as cap_logger:
sd.to("cuda")
assert "It is strongly recommended against doing so" in str(cap_logger)
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
def test_set_scheduler(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, DDIMScheduler)
sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, DDPMScheduler)
sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, PNDMScheduler)
sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, LMSDiscreteScheduler)
sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, EulerDiscreteScheduler)
sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler)
sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, DPMSolverMultistepScheduler)
def test_set_scheduler_consistency(self):
unet = self.dummy_cond_unet()
pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=pndm,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
pndm_config = sd.scheduler.config
sd.scheduler = DDPMScheduler.from_config(pndm_config)
sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
pndm_config_2 = sd.scheduler.config
pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config}
assert dict(pndm_config) == dict(pndm_config_2)
sd = StableDiffusionPipeline(
unet=unet,
scheduler=ddim,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
ddim_config = sd.scheduler.config
sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config)
sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
ddim_config_2 = sd.scheduler.config
ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config}
assert dict(ddim_config) == dict(ddim_config_2)
def test_save_safe_serialization(self):
pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
with tempfile.TemporaryDirectory() as tmpdirname:
pipeline.save_pretrained(tmpdirname, safe_serialization=True)
# Validate that the VAE safetensor exists and are of the correct format
vae_path = os.path.join(tmpdirname, "vae", "diffusion_pytorch_model.safetensors")
assert os.path.exists(vae_path), f"Could not find {vae_path}"
_ = safetensors.torch.load_file(vae_path)
# Validate that the UNet safetensor exists and are of the correct format
unet_path = os.path.join(tmpdirname, "unet", "diffusion_pytorch_model.safetensors")
assert os.path.exists(unet_path), f"Could not find {unet_path}"
_ = safetensors.torch.load_file(unet_path)
# Validate that the text encoder safetensor exists and are of the correct format
text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors")
assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}"
_ = safetensors.torch.load_file(text_encoder_path)
pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert pipeline.unet is not None
assert pipeline.vae is not None
assert pipeline.text_encoder is not None
assert pipeline.scheduler is not None
assert pipeline.feature_extractor is not None
def test_no_pytorch_download_when_doing_safetensors(self):
# by default we don't download
with tempfile.TemporaryDirectory() as tmpdirname:
_ = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
)
path = os.path.join(
tmpdirname,
"models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
"snapshots",
"07838d72e12f9bcec1375b0482b80c1d399be843",
"unet",
)
# safetensors exists
assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
# pytorch does not
assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))
def test_no_safetensors_download_when_doing_pytorch(self):
# mock diffusers safetensors not available
import diffusers
diffusers.utils.import_utils._safetensors_available = False
with tempfile.TemporaryDirectory() as tmpdirname:
_ = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
)
path = os.path.join(
tmpdirname,
"models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
"snapshots",
"07838d72e12f9bcec1375b0482b80c1d399be843",
"unet",
)
# safetensors does not exists
assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
# pytorch does
assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))
diffusers.utils.import_utils._safetensors_available = True
def test_optional_components(self):
unet = self.dummy_cond_unet()
pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
orig_sd = StableDiffusionPipeline(
unet=unet,
scheduler=pndm,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=unet,
feature_extractor=self.dummy_extractor,
)
sd = orig_sd
assert sd.config.requires_safety_checker is True
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
# Test that passing None works
sd = StableDiffusionPipeline.from_pretrained(
tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False
)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
# Test that loading previous None works
sd = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
orig_sd.save_pretrained(tmpdirname)
# Test that loading without any directory works
shutil.rmtree(os.path.join(tmpdirname, "safety_checker"))
with open(os.path.join(tmpdirname, sd.config_name)) as f:
config = json.load(f)
config["safety_checker"] = [None, None]
with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
json.dump(config, f)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False)
sd.save_pretrained(tmpdirname)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
# Test that loading from deleted model index works
with open(os.path.join(tmpdirname, sd.config_name)) as f:
config = json.load(f)
del config["safety_checker"]
del config["feature_extractor"]
with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
json.dump(config, f)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
# Test that partially loading works
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor != (None, None)
# Test that partially loading works
sd = StableDiffusionPipeline.from_pretrained(
tmpdirname,
feature_extractor=self.dummy_extractor,
safety_checker=unet,
requires_safety_checker=[True, True],
)
assert sd.config.requires_safety_checker == [True, True]
assert sd.config.safety_checker != (None, None)
assert sd.config.feature_extractor != (None, None)
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)
assert sd.config.requires_safety_checker == [True, True]
assert sd.config.safety_checker != (None, None)
assert sd.config.feature_extractor != (None, None)
@slow
@require_torch_gpu
class PipelineSlowTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_smart_download(self):
model_id = "hf-internal-testing/unet-pipeline-dummy"
with tempfile.TemporaryDirectory() as tmpdirname:
_ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
local_repo_name = "--".join(["models"] + model_id.split("/"))
snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])
# inspect all downloaded files to make sure that everything is included
assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
# let's make sure the super large numpy file:
# https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
# is not downloaded, but all the expected ones
assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))
def test_warning_unused_kwargs(self):
model_id = "hf-internal-testing/unet-pipeline-dummy"
logger = logging.get_logger("diffusers.pipelines")
with tempfile.TemporaryDirectory() as tmpdirname:
with CaptureLogger(logger) as cap_logger:
DiffusionPipeline.from_pretrained(
model_id,
not_used=True,
cache_dir=tmpdirname,
force_download=True,
)
assert (
cap_logger.out.strip().split("\n")[-1]
== "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored."
)
def test_from_save_pretrained(self):
# 1. Load models
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
scheduler = DDPMScheduler(num_train_timesteps=10)
ddpm = DDPMPipeline(model, scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
with tempfile.TemporaryDirectory() as tmpdirname:
ddpm.save_pretrained(tmpdirname)
new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
new_ddpm.to(torch_device)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
@require_torch_2
def test_from_save_pretrained_dynamo(self):
# 1. Load models
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
model = torch.compile(model)
scheduler = DDPMScheduler(num_train_timesteps=10)
ddpm = DDPMPipeline(model, scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
with tempfile.TemporaryDirectory() as tmpdirname:
ddpm.save_pretrained(tmpdirname)
new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
new_ddpm.to(torch_device)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
def test_from_pretrained_hub(self):
model_path = "google/ddpm-cifar10-32"
scheduler = DDPMScheduler(num_train_timesteps=10)
ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
ddpm = ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
ddpm_from_hub = ddpm_from_hub.to(torch_device)
ddpm_from_hub.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
def test_from_pretrained_hub_pass_model(self):
model_path = "google/ddpm-cifar10-32"
scheduler = DDPMScheduler(num_train_timesteps=10)
# pass unet into DiffusionPipeline
unet = UNet2DModel.from_pretrained(model_path)
ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
ddpm_from_hub = ddpm_from_hub.to(torch_device)
ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm_from_hub_custom_model(generator=generator, num_inference_steps=5, output_type="numpy").images
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
def test_output_format(self):
model_path = "google/ddpm-cifar10-32"
scheduler = DDIMScheduler.from_pretrained(model_path)
pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
images = pipe(output_type="numpy").images
assert images.shape == (1, 32, 32, 3)
assert isinstance(images, np.ndarray)
images = pipe(output_type="pil", num_inference_steps=4).images
assert isinstance(images, list)
assert len(images) == 1
assert isinstance(images[0], PIL.Image.Image)
# use PIL by default
images = pipe(num_inference_steps=4).images
assert isinstance(images, list)
assert isinstance(images[0], PIL.Image.Image)
def test_from_flax_from_pt(self):
pipe_pt = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe_pt.to(torch_device)
if not is_flax_available():
raise ImportError("Make sure flax is installed.")
from diffusers import FlaxStableDiffusionPipeline
with tempfile.TemporaryDirectory() as tmpdirname:
pipe_pt.save_pretrained(tmpdirname)
pipe_flax, params = FlaxStableDiffusionPipeline.from_pretrained(
tmpdirname, safety_checker=None, from_pt=True
)
with tempfile.TemporaryDirectory() as tmpdirname:
pipe_flax.save_pretrained(tmpdirname, params=params)
pipe_pt_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None, from_flax=True)
pipe_pt_2.to(torch_device)
prompt = "Hello"
generator = torch.manual_seed(0)
image_0 = pipe_pt(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
).images[0]
generator = torch.manual_seed(0)
image_1 = pipe_pt_2(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
).images[0]
assert np.abs(image_0 - image_1).sum() < 1e-5, "Models don't give the same forward pass"
@require_compel
def test_weighted_prompts_compel(self):
from compel import Compel
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing()
compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
prompt = "a red cat playing with a ball{}"
prompts = [prompt.format(s) for s in ["", "++", "--"]]
prompt_embeds = compel(prompts)
generator = [torch.Generator(device="cpu").manual_seed(33) for _ in range(prompt_embeds.shape[0])]
images = pipe(
prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20, output_type="numpy"
).images
for i, image in enumerate(images):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
f"/compel/forest_{i}.npy"
)
assert np.abs(image - expected_image).max() < 1e-2
@nightly
@require_torch_gpu
class PipelineNightlyTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_ddpm_ddim_equality_batched(self):
seed = 0
model_id = "google/ddpm-cifar10-32"
unet = UNet2DModel.from_pretrained(model_id)
ddpm_scheduler = DDPMScheduler()
ddim_scheduler = DDIMScheduler()
ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
ddim.to(torch_device)
ddim.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(seed)
ddpm_images = ddpm(batch_size=2, generator=generator, output_type="numpy").images
generator = torch.Generator(device=torch_device).manual_seed(seed)
ddim_images = ddim(
batch_size=2,
generator=generator,
num_inference_steps=1000,
eta=1.0,
output_type="numpy",
use_clipped_model_output=True, # Need this to make DDIM match DDPM
).images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(ddpm_images - ddim_images).max() < 1e-1
|