Spaces:
Running
on
A10G
Running
on
A10G
File size: 28,164 Bytes
f1069cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 |
import os
import torch
import numpy as np
from tqdm import tqdm
from audioldm.utils import default, instantiate_from_config, save_wave
from audioldm.latent_diffusion.ddpm import DDPM
from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution
from audioldm.latent_diffusion.util import noise_like
from audioldm.latent_diffusion.ddim import DDIMSampler
import os
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class LatentDiffusion(DDPM):
"""main class"""
def __init__(
self,
device="cuda",
first_stage_config=None,
cond_stage_config=None,
num_timesteps_cond=None,
cond_stage_key="image",
cond_stage_trainable=False,
concat_mode=True,
cond_stage_forward=None,
conditioning_key=None,
scale_factor=1.0,
scale_by_std=False,
base_learning_rate=None,
*args,
**kwargs,
):
self.device = device
self.learning_rate = base_learning_rate
self.num_timesteps_cond = default(num_timesteps_cond, 1)
self.scale_by_std = scale_by_std
assert self.num_timesteps_cond <= kwargs["timesteps"]
# for backwards compatibility after implementation of DiffusionWrapper
if conditioning_key is None:
conditioning_key = "concat" if concat_mode else "crossattn"
if cond_stage_config == "__is_unconditional__":
conditioning_key = None
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", [])
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
self.cond_stage_key_orig = cond_stage_key
try:
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
except:
self.num_downs = 0
if not scale_by_std:
self.scale_factor = scale_factor
else:
self.register_buffer("scale_factor", torch.tensor(scale_factor))
self.instantiate_first_stage(first_stage_config)
self.instantiate_cond_stage(cond_stage_config)
self.cond_stage_forward = cond_stage_forward
self.clip_denoised = False
def make_cond_schedule(
self,
):
self.cond_ids = torch.full(
size=(self.num_timesteps,),
fill_value=self.num_timesteps - 1,
dtype=torch.long,
)
ids = torch.round(
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
).long()
self.cond_ids[: self.num_timesteps_cond] = ids
def register_schedule(
self,
given_betas=None,
beta_schedule="linear",
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
):
super().register_schedule(
given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
)
self.shorten_cond_schedule = self.num_timesteps_cond > 1
if self.shorten_cond_schedule:
self.make_cond_schedule()
def instantiate_first_stage(self, config):
model = instantiate_from_config(config)
self.first_stage_model = model.eval()
self.first_stage_model.train = disabled_train
for param in self.first_stage_model.parameters():
param.requires_grad = False
def instantiate_cond_stage(self, config):
if not self.cond_stage_trainable:
if config == "__is_first_stage__":
print("Using first stage also as cond stage.")
self.cond_stage_model = self.first_stage_model
elif config == "__is_unconditional__":
print(f"Training {self.__class__.__name__} as an unconditional model.")
self.cond_stage_model = None
# self.be_unconditional = True
else:
model = instantiate_from_config(config)
self.cond_stage_model = model.eval()
self.cond_stage_model.train = disabled_train
for param in self.cond_stage_model.parameters():
param.requires_grad = False
else:
assert config != "__is_first_stage__"
assert config != "__is_unconditional__"
model = instantiate_from_config(config)
self.cond_stage_model = model
self.cond_stage_model = self.cond_stage_model.to(self.device)
def get_first_stage_encoding(self, encoder_posterior):
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
else:
raise NotImplementedError(
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
)
return self.scale_factor * z
def get_learned_conditioning(self, c):
if self.cond_stage_forward is None:
if hasattr(self.cond_stage_model, "encode") and callable(
self.cond_stage_model.encode
):
c = self.cond_stage_model.encode(c)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
# Text input is list
if type(c) == list and len(c) == 1:
c = self.cond_stage_model([c[0], c[0]])
c = c[0:1]
else:
c = self.cond_stage_model(c)
else:
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
return c
@torch.no_grad()
def get_input(
self,
batch,
k,
return_first_stage_encode=True,
return_first_stage_outputs=False,
force_c_encode=False,
cond_key=None,
return_original_cond=False,
bs=None,
):
x = super().get_input(batch, k)
if bs is not None:
x = x[:bs]
x = x.to(self.device)
if return_first_stage_encode:
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
else:
z = None
if self.model.conditioning_key is not None:
if cond_key is None:
cond_key = self.cond_stage_key
if cond_key != self.first_stage_key:
if cond_key in ["caption", "coordinates_bbox"]:
xc = batch[cond_key]
elif cond_key == "class_label":
xc = batch
else:
# [bs, 1, 527]
xc = super().get_input(batch, cond_key)
if type(xc) == torch.Tensor:
xc = xc.to(self.device)
else:
xc = x
if not self.cond_stage_trainable or force_c_encode:
if isinstance(xc, dict) or isinstance(xc, list):
c = self.get_learned_conditioning(xc)
else:
c = self.get_learned_conditioning(xc.to(self.device))
else:
c = xc
if bs is not None:
c = c[:bs]
else:
c = None
xc = None
if self.use_positional_encodings:
pos_x, pos_y = self.compute_latent_shifts(batch)
c = {"pos_x": pos_x, "pos_y": pos_y}
out = [z, c]
if return_first_stage_outputs:
xrec = self.decode_first_stage(z)
out.extend([x, xrec])
if return_original_cond:
out.append(xc)
return out
@torch.no_grad()
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
if predict_cids:
if z.dim() == 4:
z = torch.argmax(z.exp(), dim=1).long()
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
z = rearrange(z, "b h w c -> b c h w").contiguous()
z = 1.0 / self.scale_factor * z
return self.first_stage_model.decode(z)
def mel_spectrogram_to_waveform(self, mel):
# Mel: [bs, 1, t-steps, fbins]
if len(mel.size()) == 4:
mel = mel.squeeze(1)
mel = mel.permute(0, 2, 1)
waveform = self.first_stage_model.vocoder(mel)
waveform = waveform.cpu().detach().numpy()
return waveform
@torch.no_grad()
def encode_first_stage(self, x):
return self.first_stage_model.encode(x)
def apply_model(self, x_noisy, t, cond, return_ids=False):
if isinstance(cond, dict):
# hybrid case, cond is exptected to be a dict
pass
else:
if not isinstance(cond, list):
cond = [cond]
if self.model.conditioning_key == "concat":
key = "c_concat"
elif self.model.conditioning_key == "crossattn":
key = "c_crossattn"
else:
key = "c_film"
cond = {key: cond}
x_recon = self.model(x_noisy, t, **cond)
if isinstance(x_recon, tuple) and not return_ids:
return x_recon[0]
else:
return x_recon
def p_mean_variance(
self,
x,
c,
t,
clip_denoised: bool,
return_codebook_ids=False,
quantize_denoised=False,
return_x0=False,
score_corrector=None,
corrector_kwargs=None,
):
t_in = t
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
if score_corrector is not None:
assert self.parameterization == "eps"
model_out = score_corrector.modify_score(
self, model_out, x, t, c, **corrector_kwargs
)
if return_codebook_ids:
model_out, logits = model_out
if self.parameterization == "eps":
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == "x0":
x_recon = model_out
else:
raise NotImplementedError()
if clip_denoised:
x_recon.clamp_(-1.0, 1.0)
if quantize_denoised:
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
x_start=x_recon, x_t=x, t=t
)
if return_codebook_ids:
return model_mean, posterior_variance, posterior_log_variance, logits
elif return_x0:
return model_mean, posterior_variance, posterior_log_variance, x_recon
else:
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(
self,
x,
c,
t,
clip_denoised=False,
repeat_noise=False,
return_codebook_ids=False,
quantize_denoised=False,
return_x0=False,
temperature=1.0,
noise_dropout=0.0,
score_corrector=None,
corrector_kwargs=None,
):
b, *_, device = *x.shape, x.device
outputs = self.p_mean_variance(
x=x,
c=c,
t=t,
clip_denoised=clip_denoised,
return_codebook_ids=return_codebook_ids,
quantize_denoised=quantize_denoised,
return_x0=return_x0,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
)
if return_codebook_ids:
raise DeprecationWarning("Support dropped.")
model_mean, _, model_log_variance, logits = outputs
elif return_x0:
model_mean, _, model_log_variance, x0 = outputs
else:
model_mean, _, model_log_variance = outputs
noise = noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.0:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
# no noise when t == 0
nonzero_mask = (
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous()
)
if return_codebook_ids:
return model_mean + nonzero_mask * (
0.5 * model_log_variance
).exp() * noise, logits.argmax(dim=1)
if return_x0:
return (
model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise,
x0,
)
else:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def progressive_denoising(
self,
cond,
shape,
verbose=True,
callback=None,
quantize_denoised=False,
img_callback=None,
mask=None,
x0=None,
temperature=1.0,
noise_dropout=0.0,
score_corrector=None,
corrector_kwargs=None,
batch_size=None,
x_T=None,
start_T=None,
log_every_t=None,
):
if not log_every_t:
log_every_t = self.log_every_t
timesteps = self.num_timesteps
if batch_size is not None:
b = batch_size if batch_size is not None else shape[0]
shape = [batch_size] + list(shape)
else:
b = batch_size = shape[0]
if x_T is None:
img = torch.randn(shape, device=self.device)
else:
img = x_T
intermediates = []
if cond is not None:
if isinstance(cond, dict):
cond = {
key: cond[key][:batch_size]
if not isinstance(cond[key], list)
else list(map(lambda x: x[:batch_size], cond[key]))
for key in cond
}
else:
cond = (
[c[:batch_size] for c in cond]
if isinstance(cond, list)
else cond[:batch_size]
)
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = (
tqdm(
reversed(range(0, timesteps)),
desc="Progressive Generation",
total=timesteps,
)
if verbose
else reversed(range(0, timesteps))
)
if type(temperature) == float:
temperature = [temperature] * timesteps
for i in iterator:
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != "hybrid"
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
img, x0_partial = self.p_sample(
img,
cond,
ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised,
return_x0=True,
temperature=temperature[i],
noise_dropout=noise_dropout,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
)
if mask is not None:
assert x0 is not None
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1.0 - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(x0_partial)
if callback:
callback(i)
if img_callback:
img_callback(img, i)
return img, intermediates
@torch.no_grad()
def p_sample_loop(
self,
cond,
shape,
return_intermediates=False,
x_T=None,
verbose=True,
callback=None,
timesteps=None,
quantize_denoised=False,
mask=None,
x0=None,
img_callback=None,
start_T=None,
log_every_t=None,
):
if not log_every_t:
log_every_t = self.log_every_t
device = self.betas.device
b = shape[0]
if x_T is None:
img = torch.randn(shape, device=device)
else:
img = x_T
intermediates = [img]
if timesteps is None:
timesteps = self.num_timesteps
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = (
tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps)
if verbose
else reversed(range(0, timesteps))
)
if mask is not None:
assert x0 is not None
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
for i in iterator:
ts = torch.full((b,), i, device=device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != "hybrid"
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
img = self.p_sample(
img,
cond,
ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised,
)
if mask is not None:
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1.0 - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(img)
if callback:
callback(i)
if img_callback:
img_callback(img, i)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(
self,
cond,
batch_size=16,
return_intermediates=False,
x_T=None,
verbose=True,
timesteps=None,
quantize_denoised=False,
mask=None,
x0=None,
shape=None,
**kwargs,
):
if shape is None:
shape = (batch_size, self.channels, self.latent_t_size, self.latent_f_size)
if cond is not None:
if isinstance(cond, dict):
cond = {
key: cond[key][:batch_size]
if not isinstance(cond[key], list)
else list(map(lambda x: x[:batch_size], cond[key]))
for key in cond
}
else:
cond = (
[c[:batch_size] for c in cond]
if isinstance(cond, list)
else cond[:batch_size]
)
return self.p_sample_loop(
cond,
shape,
return_intermediates=return_intermediates,
x_T=x_T,
verbose=verbose,
timesteps=timesteps,
quantize_denoised=quantize_denoised,
mask=mask,
x0=x0,
**kwargs,
)
@torch.no_grad()
def sample_log(
self,
cond,
batch_size,
ddim,
ddim_steps,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
use_plms=False,
mask=None,
**kwargs,
):
if mask is not None:
shape = (self.channels, mask.size()[-2], mask.size()[-1])
else:
shape = (self.channels, self.latent_t_size, self.latent_f_size)
intermediate = None
if ddim and not use_plms:
# print("Use ddim sampler")
ddim_sampler = DDIMSampler(self)
samples, intermediates = ddim_sampler.sample(
ddim_steps,
batch_size,
shape,
cond,
verbose=False,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
mask=mask,
**kwargs,
)
else:
# print("Use DDPM sampler")
samples, intermediates = self.sample(
cond=cond,
batch_size=batch_size,
return_intermediates=True,
unconditional_guidance_scale=unconditional_guidance_scale,
mask=mask,
unconditional_conditioning=unconditional_conditioning,
**kwargs,
)
return samples, intermediate
@torch.no_grad()
def generate_sample(
self,
batchs,
ddim_steps=200,
ddim_eta=1.0,
x_T=None,
n_candidate_gen_per_text=1,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
name="waveform",
use_plms=False,
save=False,
**kwargs,
):
# Generate n_candidate_gen_per_text times and select the best
# Batch: audio, text, fnames
assert x_T is None
try:
batchs = iter(batchs)
except TypeError:
raise ValueError("The first input argument should be an iterable object")
if use_plms:
assert ddim_steps is not None
use_ddim = ddim_steps is not None
# waveform_save_path = os.path.join(self.get_log_dir(), name)
# os.makedirs(waveform_save_path, exist_ok=True)
# print("Waveform save path: ", waveform_save_path)
with self.ema_scope("Generate"):
for batch in batchs:
z, c = self.get_input(
batch,
self.first_stage_key,
cond_key=self.cond_stage_key,
return_first_stage_outputs=False,
force_c_encode=True,
return_original_cond=False,
bs=None,
)
text = super().get_input(batch, "text")
# Generate multiple samples
batch_size = z.shape[0] * n_candidate_gen_per_text
c = torch.cat([c] * n_candidate_gen_per_text, dim=0)
text = text * n_candidate_gen_per_text
if unconditional_guidance_scale != 1.0:
unconditional_conditioning = (
self.cond_stage_model.get_unconditional_condition(batch_size)
)
samples, _ = self.sample_log(
cond=c,
batch_size=batch_size,
x_T=x_T,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
use_plms=use_plms,
)
if(torch.max(torch.abs(samples)) > 1e2):
samples = torch.clip(samples, min=-10, max=10)
mel = self.decode_first_stage(samples)
waveform = self.mel_spectrogram_to_waveform(mel)
if waveform.shape[0] > 1:
similarity = self.cond_stage_model.cos_similarity(
torch.FloatTensor(waveform).squeeze(1), text
)
best_index = []
for i in range(z.shape[0]):
candidates = similarity[i :: z.shape[0]]
max_index = torch.argmax(candidates).item()
best_index.append(i + max_index * z.shape[0])
waveform = waveform[best_index]
# print("Similarity between generated audio and text", similarity)
# print("Choose the following indexes:", best_index)
return waveform
@torch.no_grad()
def generate_sample_masked(
self,
batchs,
ddim_steps=200,
ddim_eta=1.0,
x_T=None,
n_candidate_gen_per_text=1,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
name="waveform",
use_plms=False,
time_mask_ratio_start_and_end=(0.25, 0.75),
freq_mask_ratio_start_and_end=(0.75, 1.0),
save=False,
**kwargs,
):
# Generate n_candidate_gen_per_text times and select the best
# Batch: audio, text, fnames
assert x_T is None
try:
batchs = iter(batchs)
except TypeError:
raise ValueError("The first input argument should be an iterable object")
if use_plms:
assert ddim_steps is not None
use_ddim = ddim_steps is not None
# waveform_save_path = os.path.join(self.get_log_dir(), name)
# os.makedirs(waveform_save_path, exist_ok=True)
# print("Waveform save path: ", waveform_save_path)
with self.ema_scope("Generate"):
for batch in batchs:
z, c = self.get_input(
batch,
self.first_stage_key,
cond_key=self.cond_stage_key,
return_first_stage_outputs=False,
force_c_encode=True,
return_original_cond=False,
bs=None,
)
text = super().get_input(batch, "text")
# Generate multiple samples
batch_size = z.shape[0] * n_candidate_gen_per_text
_, h, w = z.shape[0], z.shape[2], z.shape[3]
mask = torch.ones(batch_size, h, w).to(self.device)
mask[:, int(h * time_mask_ratio_start_and_end[0]) : int(h * time_mask_ratio_start_and_end[1]), :] = 0
mask[:, :, int(w * freq_mask_ratio_start_and_end[0]) : int(w * freq_mask_ratio_start_and_end[1])] = 0
mask = mask[:, None, ...]
c = torch.cat([c] * n_candidate_gen_per_text, dim=0)
text = text * n_candidate_gen_per_text
if unconditional_guidance_scale != 1.0:
unconditional_conditioning = (
self.cond_stage_model.get_unconditional_condition(batch_size)
)
samples, _ = self.sample_log(
cond=c,
batch_size=batch_size,
x_T=x_T,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
use_plms=use_plms, mask=mask, x0=torch.cat([z] * n_candidate_gen_per_text)
)
mel = self.decode_first_stage(samples)
waveform = self.mel_spectrogram_to_waveform(mel)
if waveform.shape[0] > 1:
similarity = self.cond_stage_model.cos_similarity(
torch.FloatTensor(waveform).squeeze(1), text
)
best_index = []
for i in range(z.shape[0]):
candidates = similarity[i :: z.shape[0]]
max_index = torch.argmax(candidates).item()
best_index.append(i + max_index * z.shape[0])
waveform = waveform[best_index]
# print("Similarity between generated audio and text", similarity)
# print("Choose the following indexes:", best_index)
return waveform |