File size: 16,399 Bytes
f1069cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
"""
wild mixture of
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
https://github.com/CompVis/taming-transformers
-- merci
"""
import sys
import os

import torch
import torch.nn as nn
import numpy as np
from contextlib import contextmanager
from functools import partial
from tqdm import tqdm

from audioldm.utils import exists, default, count_params, instantiate_from_config
from audioldm.latent_diffusion.ema import LitEma
from audioldm.latent_diffusion.util import (
    make_beta_schedule,
    extract_into_tensor,
    noise_like,
)
import soundfile as sf
import os


__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"}


def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    return self


def uniform_on_device(r1, r2, shape, device):
    return (r1 - r2) * torch.rand(*shape, device=device) + r2


class DiffusionWrapper(nn.Module):
    def __init__(self, diff_model_config, conditioning_key):
        super().__init__()
        self.diffusion_model = instantiate_from_config(diff_model_config)
        self.conditioning_key = conditioning_key
        assert self.conditioning_key in [
            None,
            "concat",
            "crossattn",
            "hybrid",
            "adm",
            "film",
        ]

    def forward(
        self, x, t, c_concat: list = None, c_crossattn: list = None, c_film: list = None
    ):
        x = x.contiguous()
        t = t.contiguous()

        if self.conditioning_key is None:
            out = self.diffusion_model(x, t)
        elif self.conditioning_key == "concat":
            xc = torch.cat([x] + c_concat, dim=1)
            out = self.diffusion_model(xc, t)
        elif self.conditioning_key == "crossattn":
            cc = torch.cat(c_crossattn, 1)
            out = self.diffusion_model(x, t, context=cc)
        elif self.conditioning_key == "hybrid":
            xc = torch.cat([x] + c_concat, dim=1)
            cc = torch.cat(c_crossattn, 1)
            out = self.diffusion_model(xc, t, context=cc)
        elif (
            self.conditioning_key == "film"
        ):  # The condition is assumed to be a global token, which wil pass through a linear layer and added with the time embedding for the FILM
            cc = c_film[0].squeeze(1)  # only has one token
            out = self.diffusion_model(x, t, y=cc)
        elif self.conditioning_key == "adm":
            cc = c_crossattn[0]
            out = self.diffusion_model(x, t, y=cc)
        else:
            raise NotImplementedError()

        return out


class DDPM(nn.Module):
    # classic DDPM with Gaussian diffusion, in image space
    def __init__(
        self,
        unet_config,
        timesteps=1000,
        beta_schedule="linear",
        loss_type="l2",
        ckpt_path=None,
        ignore_keys=[],
        load_only_unet=False,
        monitor="val/loss",
        use_ema=True,
        first_stage_key="image",
        latent_t_size=256,
        latent_f_size=16,
        channels=3,
        log_every_t=100,
        clip_denoised=True,
        linear_start=1e-4,
        linear_end=2e-2,
        cosine_s=8e-3,
        given_betas=None,
        original_elbo_weight=0.0,
        v_posterior=0.0,  # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
        l_simple_weight=1.0,
        conditioning_key=None,
        parameterization="eps",  # all assuming fixed variance schedules
        scheduler_config=None,
        use_positional_encodings=False,
        learn_logvar=False,
        logvar_init=0.0,
    ):
        super().__init__()
        assert parameterization in [
            "eps",
            "x0",
        ], 'currently only supporting "eps" and "x0"'
        self.parameterization = parameterization
        self.state = None
        # print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
        self.cond_stage_model = None
        self.clip_denoised = clip_denoised
        self.log_every_t = log_every_t
        self.first_stage_key = first_stage_key

        self.latent_t_size = latent_t_size
        self.latent_f_size = latent_f_size

        self.channels = channels
        self.use_positional_encodings = use_positional_encodings
        self.model = DiffusionWrapper(unet_config, conditioning_key)
        count_params(self.model, verbose=True)
        self.use_ema = use_ema
        if self.use_ema:
            self.model_ema = LitEma(self.model)
            # print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")

        self.use_scheduler = scheduler_config is not None
        if self.use_scheduler:
            self.scheduler_config = scheduler_config

        self.v_posterior = v_posterior
        self.original_elbo_weight = original_elbo_weight
        self.l_simple_weight = l_simple_weight

        if monitor is not None:
            self.monitor = monitor

        self.register_schedule(
            given_betas=given_betas,
            beta_schedule=beta_schedule,
            timesteps=timesteps,
            linear_start=linear_start,
            linear_end=linear_end,
            cosine_s=cosine_s,
        )

        self.loss_type = loss_type

        self.learn_logvar = learn_logvar
        self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
        if self.learn_logvar:
            self.logvar = nn.Parameter(self.logvar, requires_grad=True)
        else:
            self.logvar = nn.Parameter(self.logvar, requires_grad=False)

        self.logger_save_dir = None
        self.logger_project = None
        self.logger_version = None
        self.label_indices_total = None
        # To avoid the system cannot find metric value for checkpoint
        self.metrics_buffer = {
            "val/kullback_leibler_divergence_sigmoid": 15.0,
            "val/kullback_leibler_divergence_softmax": 10.0,
            "val/psnr": 0.0,
            "val/ssim": 0.0,
            "val/inception_score_mean": 1.0,
            "val/inception_score_std": 0.0,
            "val/kernel_inception_distance_mean": 0.0,
            "val/kernel_inception_distance_std": 0.0,
            "val/frechet_inception_distance": 133.0,
            "val/frechet_audio_distance": 32.0,
        }
        self.initial_learning_rate = None

    def get_log_dir(self):
        if (
            self.logger_save_dir is None
            and self.logger_project is None
            and self.logger_version is None
        ):
            return os.path.join(
                self.logger.save_dir, self.logger._project, self.logger.version
            )
        else:
            return os.path.join(
                self.logger_save_dir, self.logger_project, self.logger_version
            )

    def set_log_dir(self, save_dir, project, version):
        self.logger_save_dir = save_dir
        self.logger_project = project
        self.logger_version = version

    def register_schedule(
        self,
        given_betas=None,
        beta_schedule="linear",
        timesteps=1000,
        linear_start=1e-4,
        linear_end=2e-2,
        cosine_s=8e-3,
    ):
        if exists(given_betas):
            betas = given_betas
        else:
            betas = make_beta_schedule(
                beta_schedule,
                timesteps,
                linear_start=linear_start,
                linear_end=linear_end,
                cosine_s=cosine_s,
            )
        alphas = 1.0 - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])

        (timesteps,) = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end
        assert (
            alphas_cumprod.shape[0] == self.num_timesteps
        ), "alphas have to be defined for each timestep"

        to_torch = partial(torch.tensor, dtype=torch.float32)

        self.register_buffer("betas", to_torch(betas))
        self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
        self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
        self.register_buffer(
            "sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
        )
        self.register_buffer(
            "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
        )
        self.register_buffer(
            "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
        )
        self.register_buffer(
            "sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
        )

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        posterior_variance = (1 - self.v_posterior) * betas * (
            1.0 - alphas_cumprod_prev
        ) / (1.0 - alphas_cumprod) + self.v_posterior * betas
        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
        self.register_buffer("posterior_variance", to_torch(posterior_variance))
        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
        self.register_buffer(
            "posterior_log_variance_clipped",
            to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
        )
        self.register_buffer(
            "posterior_mean_coef1",
            to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
        )
        self.register_buffer(
            "posterior_mean_coef2",
            to_torch(
                (1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
            ),
        )

        if self.parameterization == "eps":
            lvlb_weights = self.betas**2 / (
                2
                * self.posterior_variance
                * to_torch(alphas)
                * (1 - self.alphas_cumprod)
            )
        elif self.parameterization == "x0":
            lvlb_weights = (
                0.5
                * np.sqrt(torch.Tensor(alphas_cumprod))
                / (2.0 * 1 - torch.Tensor(alphas_cumprod))
            )
        else:
            raise NotImplementedError("mu not supported")
        # TODO how to choose this term
        lvlb_weights[0] = lvlb_weights[1]
        self.register_buffer("lvlb_weights", lvlb_weights, persistent=False)
        assert not torch.isnan(self.lvlb_weights).all()

    @contextmanager
    def ema_scope(self, context=None):
        if self.use_ema:
            self.model_ema.store(self.model.parameters())
            self.model_ema.copy_to(self.model)
            if context is not None:
                # print(f"{context}: Switched to EMA weights")
                pass
        try:
            yield None
        finally:
            if self.use_ema:
                self.model_ema.restore(self.model.parameters())
                if context is not None:
                    # print(f"{context}: Restored training weights")
                    pass

    def q_mean_variance(self, x_start, t):
        """
        Get the distribution q(x_t | x_0).
        :param x_start: the [N x C x ...] tensor of noiseless inputs.
        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
        :return: A tuple (mean, variance, log_variance), all of x_start's shape.
        """
        mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
        variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
        log_variance = extract_into_tensor(
            self.log_one_minus_alphas_cumprod, t, x_start.shape
        )
        return mean, variance, log_variance

    def predict_start_from_noise(self, x_t, t, noise):
        return (
            extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
            - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
            * noise
        )

    def q_posterior(self, x_start, x_t, t):
        posterior_mean = (
            extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
            + extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract_into_tensor(
            self.posterior_log_variance_clipped, t, x_t.shape
        )
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def p_mean_variance(self, x, t, clip_denoised: bool):
        model_out = self.model(x, t)
        if self.parameterization == "eps":
            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
        elif self.parameterization == "x0":
            x_recon = model_out
        if clip_denoised:
            x_recon.clamp_(-1.0, 1.0)

        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
            x_start=x_recon, x_t=x, t=t
        )
        return model_mean, posterior_variance, posterior_log_variance

    @torch.no_grad()
    def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
        b, *_, device = *x.shape, x.device
        model_mean, _, model_log_variance = self.p_mean_variance(
            x=x, t=t, clip_denoised=clip_denoised
        )
        noise = noise_like(x.shape, device, repeat_noise)
        # no noise when t == 0
        nonzero_mask = (
            (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous()
        )
        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise

    @torch.no_grad()
    def p_sample_loop(self, shape, return_intermediates=False):
        device = self.betas.device
        b = shape[0]
        img = torch.randn(shape, device=device)
        intermediates = [img]
        for i in tqdm(
            reversed(range(0, self.num_timesteps)),
            desc="Sampling t",
            total=self.num_timesteps,
        ):
            img = self.p_sample(
                img,
                torch.full((b,), i, device=device, dtype=torch.long),
                clip_denoised=self.clip_denoised,
            )
            if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
                intermediates.append(img)
        if return_intermediates:
            return img, intermediates
        return img

    @torch.no_grad()
    def sample(self, batch_size=16, return_intermediates=False):
        shape = (batch_size, channels, self.latent_t_size, self.latent_f_size)
        channels = self.channels
        return self.p_sample_loop(shape, return_intermediates=return_intermediates)

    def q_sample(self, x_start, t, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))
        return (
            extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
            + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
            * noise
        )

    def forward(self, x, *args, **kwargs):
        t = torch.randint(
            0, self.num_timesteps, (x.shape[0],), device=self.device
        ).long()
        return self.p_losses(x, t, *args, **kwargs)

    def get_input(self, batch, k):
        # fbank, log_magnitudes_stft, label_indices, fname, waveform, clip_label, text = batch
        fbank, log_magnitudes_stft, label_indices, fname, waveform, text = batch
        ret = {}

        ret["fbank"] = (
            fbank.unsqueeze(1).to(memory_format=torch.contiguous_format).float()
        )
        ret["stft"] = log_magnitudes_stft.to(
            memory_format=torch.contiguous_format
        ).float()
        # ret["clip_label"] = clip_label.to(memory_format=torch.contiguous_format).float()
        ret["waveform"] = waveform.to(memory_format=torch.contiguous_format).float()
        ret["text"] = list(text)
        ret["fname"] = fname

        return ret[k]