Spaces:
Sleeping
Sleeping
File size: 34,417 Bytes
f1069cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 |
import ast
import json
import logging
import math
import os
import random
# import h5py
from dataclasses import dataclass
from audioldm.clap.training.params import parse_args
# import braceexpand
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.datasets as datasets
import torchvision.transforms
# import webdataset as wds
from PIL import Image
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler
from torch.utils.data.distributed import DistributedSampler
from functools import partial
import soundfile as sf
import io
from pathlib import Path
# import wget
from audioldm.clap.open_clip.utils import (
get_tar_path_from_dataset_name,
dataset_split,
)
from audioldm.clap.open_clip.utils import load_p, load_class_label
import copy
try:
import horovod.torch as hvd
except ImportError:
hvd = None
try:
import torchaudio
except ImportError:
torchaudio = None
from audioldm.clap.open_clip import tokenize
def tokenizer(text):
return tokenize(text).squeeze(0)
from transformers import RobertaTokenizer
tokenize = RobertaTokenizer.from_pretrained("roberta-base")
def tokenizer(text):
result = tokenize(
text,
padding="max_length",
truncation=True,
max_length=77,
return_tensors="pt",
)
return {k: v.squeeze(0) for k, v in result.items()}
# initizlied the audioset map
_AUDIOSET_MAP_PATH = os.path.join(Path(__file__).parent, "audioset_textmap.npy")
_AUDIOSET_MAP = np.load(_AUDIOSET_MAP_PATH, allow_pickle=True)
def int16_to_float32(x):
return (x / 32767.0).astype(np.float32)
def float32_to_int16(x):
x = np.clip(x, a_min=-1.0, a_max=1.0)
return (x * 32767.0).astype(np.int16)
# For Toy Dataset
# class ToyDataset(Dataset):
# def __init__(self, index_path, ipc, config, eval_mode=False):
# """Toy Dataset for testing the audioset input with text labels
# Parameters
# ----------
# index_path: str
# the link to the h5 file of each audio
# idc: str
# the link to the npy file, the number of samples in each class
# config: dict
# the audio cfg file
# eval_model (bool): to indicate if the dataset is a testing dataset
# """
# self.audio_cfg = config["audio_cfg"]
# self.text_cfg = config["text_cfg"]
# self.fp = h5py.File(index_path, "r")
# self.ipc = np.load(ipc, allow_pickle=True)
# self.total_size = len(self.fp["audio_name"])
# self.classes_num = self.audio_cfg["class_num"]
# self.eval_mode = eval_mode
# if not eval_mode:
# self.generate_queue()
# else:
# self.queue = []
# for i in range(self.total_size):
# target = self.fp["target"][i]
# if np.sum(target) > 0:
# self.queue.append(i)
# self.total_size = len(self.queue)
# logging.info("total dataset size: %d" % (self.total_size))
# logging.info("class num: %d" % (self.classes_num))
# def time_shifting(self, x):
# frame_num = len(x)
# shift_len = random.randint(0, frame_num - 1)
# new_sample = np.concatenate([x[shift_len:], x[:shift_len]], axis=0)
# return new_sample
# def generate_queue(self):
# self.queue = []
# while len(self.queue) < self.total_size:
# class_set = [*range(self.classes_num)]
# random.shuffle(class_set)
# self.queue += [
# self.ipc[d][random.randint(0, len(self.ipc[d]) - 1)] for d in class_set
# ]
# self.queue = self.queue[: self.total_size]
# logging.info("queue regenerated:%s" % (self.queue[-5:]))
# def crop_wav(self, x):
# crop_size = self.audio_cfg["crop_size"]
# crop_pos = random.randint(0, len(x) - crop_size - 1)
# return x[crop_pos : crop_pos + crop_size]
# def prompt_text(self, target):
# events = _AUDIOSET_MAP[np.where(target > 0)]
# event_text = "The sounds of " + ", ".join(events[:-1]) + " and " + events[-1]
# text = tokenize(event_text)[0]
# return text
# def __getitem__(self, index):
# """Load waveform, text, and target of an audio clip
# Parameters
# ----------
# index: int
# the index number
# Return
# ------
# output: dict {
# "hdf5_path": str,
# "index_in_hdf5": int,
# "audio_name": str,
# "waveform": list (audio_length,),
# "target": list (class_num, ),
# "text": torch.tensor (context_length,)
# }
# the output dictionary
# """
# s_index = self.queue[index]
# audio_name = self.fp["audio_name"][s_index].decode()
# # Hardcode here CHANGE
# hdf5_path = (
# self.fp["hdf5_path"][s_index]
# .decode()
# .replace(
# "../workspace",
# "/home/la/kechen/Research/ke_zsasp/workspace",
# )
# )
# r_idx = self.fp["index_in_hdf5"][s_index]
# target = self.fp["target"][s_index].astype(np.float32)
# text = self.prompt_text(target)
# with h5py.File(hdf5_path, "r") as f:
# waveform = int16_to_float32(f["waveform"][r_idx])[
# : self.audio_cfg["clip_samples"]
# ]
# assert (
# len(waveform) == self.audio_cfg["clip_samples"]
# ), "The sample length is not match"
# # Time shift
# # if (self.config.enable_time_shift) and (not self.eval_mode):
# # waveform = self.time_shifting(waveform)
# # # Label Enhance
# # if (self.config.crop_size is not None) and (not self.eval_mode):
# # waveform = self.crop_wav(waveform)
# # # the label enhance rate is fixed 0.5
# # if (self.config.enable_label_enhance) and (not self.eval_mode) and random.random() < 0.5:
# # kidx = np.where(target)[0]
# # for k in kidx:
# # for add_key in self.class_map[k][1]:
# # target[add_key] = 1.0
# # if len(self.class_map[k][2]) > 0:
# # add_key = random.choice(self.class_map[k][2])
# # target[add_key] = 1.0
# # missing the text input
# mel_spec = get_mel(torch.from_numpy(waveform), self.audio_cfg)[None, :, :]
# mel_spec = (
# torch.cat(
# [mel_spec, mel_spec.clone(), mel_spec.clone(), mel_spec.clone()], dim=0
# )
# .cpu()
# .numpy()
# )
# longer = random.choice([True, False])
# if longer == False:
# mel_spec[1:, :, :] = 0.0
# data_dict = {
# "hdf5_path": hdf5_path,
# "index_in_hdf5": r_idx,
# "audio_name": audio_name,
# "waveform": waveform,
# "class_label": target,
# "text": text,
# "longer": longer,
# "mel_fusion": mel_spec,
# }
# return data_dict
# def __len__(self):
# return self.total_size
class CsvDataset(Dataset):
def __init__(self, input_filename, transforms, img_key, caption_key, sep="\t"):
logging.debug(f"Loading csv data from {input_filename}.")
df = pd.read_csv(input_filename, sep=sep)
self.images = df[img_key].tolist()
self.captions = df[caption_key].tolist()
self.transforms = transforms
logging.debug("Done loading data.")
def __len__(self):
return len(self.captions)
def __getitem__(self, idx):
images = self.transforms(Image.open(str(self.images[idx])))
texts = tokenize([str(self.captions[idx])])[0]
return images, texts
@dataclass
class DataInfo:
dataloader: DataLoader
sampler: DistributedSampler
def preprocess_txt(text):
return tokenize([str(text)])[0]
def get_dataset_size(shards, sizefilepath_=None, is_local=True):
if isinstance(shards, list):
size_list = []
for s in shards:
size_list.append(
get_dataset_size(s, sizefilepath_=sizefilepath_, is_local=is_local)[0]
)
else:
if not is_local:
for n in dataset_split.keys():
if n in shards.split("/"):
break
for s in dataset_split[n]:
if s in shards.split("/"):
break
sizefilepath_ = f"./json_files/{n}/{s}/sizes.json"
shards_list = list(braceexpand.braceexpand(shards))
dir_path = os.path.dirname(shards)
if sizefilepath_ is not None:
sizes = json.load(open(sizefilepath_, "r"))
total_size = sum(
[
int(sizes[os.path.basename(shard.replace(".tar -", ".tar"))])
for shard in shards_list
]
)
else:
sizes_filename = os.path.join(dir_path, "sizes.json")
len_filename = os.path.join(dir_path, "__len__")
if os.path.exists(sizes_filename):
sizes = json.load(open(sizes_filename, "r"))
total_size = sum(
[int(sizes[os.path.basename(shard)]) for shard in shards_list]
)
elif os.path.exists(len_filename):
# FIXME this used to be eval(open(...)) but that seemed rather unsafe
total_size = ast.literal_eval(open(len_filename, "r").read())
else:
raise Exception(
"Cannot find sizes file for dataset. Please specify the path to the file."
)
# total_size = None # num samples undefined
# some common dataset sizes (at time of authors last download)
# cc3m-train: 2905954
# cc12m: 10968539
# LAION-400m: 407332084
num_shards = len(shards_list)
if isinstance(shards, list):
return sum(size_list), len(shards)
else:
return total_size, num_shards
def get_imagenet(args, preprocess_fns, split):
assert split in ["train", "val", "v2"]
is_train = split == "train"
preprocess_train, preprocess_val = preprocess_fns
if split == "v2":
from imagenetv2_pytorch import ImageNetV2Dataset
dataset = ImageNetV2Dataset(location=args.imagenet_v2, transform=preprocess_val)
else:
if is_train:
data_path = args.imagenet_train
preprocess_fn = preprocess_train
else:
data_path = args.imagenet_val
preprocess_fn = preprocess_val
assert data_path
dataset = datasets.ImageFolder(data_path, transform=preprocess_fn)
if is_train:
idxs = np.zeros(len(dataset.targets))
target_array = np.array(dataset.targets)
k = 50
for c in range(1000):
m = target_array == c
n = len(idxs[m])
arr = np.zeros(n)
arr[:k] = 1
np.random.shuffle(arr)
idxs[m] = arr
idxs = idxs.astype("int")
sampler = SubsetRandomSampler(np.where(idxs)[0])
else:
sampler = None
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
num_workers=args.workers,
sampler=sampler,
)
return DataInfo(dataloader, sampler)
def count_samples(dataloader):
os.environ["WDS_EPOCH"] = "0"
n_elements, n_batches = 0, 0
for images, texts in dataloader:
n_batches += 1
n_elements += len(images)
assert len(images) == len(texts)
return n_elements, n_batches
def filter_no_caption(sample):
return "txt" in sample
def log_and_continue(exn):
"""Call in an exception handler to ignore any exception, isssue a warning, and continue."""
logging.warning(f"Handling webdataset error ({repr(exn)}). Ignoring.")
return True
_SHARD_SHUFFLE_SIZE = 2000
_SHARD_SHUFFLE_INITIAL = 500
_SAMPLE_SHUFFLE_SIZE = 5000
_SAMPLE_SHUFFLE_INITIAL = 1000
def sample_prop(sizefile, inputs, proportion, is_local=True):
"""
Sample a proportion of the data.
"""
file_path_dict = {
os.path.split(inputs[i])[1]: os.path.split(inputs[i])[0]
for i in range(len(inputs))
}
sampled_filepath_dict = {}
sampled_size_dict = {}
if not is_local:
if os.path.exists("sizes.json"):
os.remove("sizes.json")
wget.download(sizefile, "sizes.json")
sizefile = "sizes.json"
with open(sizefile, "r", encoding="UTF-8") as f:
load_dict = json.load(f)
L = int(len(file_path_dict) * proportion)
subkeys = random.sample(file_path_dict.keys(), L)
for k in subkeys:
sampled_size_dict[k] = load_dict[k]
sampled_filepath_dict[k] = file_path_dict[k]
return (
sum(sampled_size_dict.values()),
L,
[os.path.join(v, k) for k, v in sampled_filepath_dict.items()],
sampled_size_dict,
)
def get_mel(audio_data, audio_cfg):
# mel shape: (n_mels, T)
mel = torchaudio.transforms.MelSpectrogram(
sample_rate=audio_cfg["sample_rate"],
n_fft=audio_cfg["window_size"],
win_length=audio_cfg["window_size"],
hop_length=audio_cfg["hop_size"],
center=True,
pad_mode="reflect",
power=2.0,
norm=None,
onesided=True,
n_mels=64,
f_min=audio_cfg["fmin"],
f_max=audio_cfg["fmax"],
).to(audio_data.device)
mel = mel(audio_data)
# Align to librosa:
# librosa_melspec = librosa.feature.melspectrogram(
# waveform,
# sr=audio_cfg['sample_rate'],
# n_fft=audio_cfg['window_size'],
# hop_length=audio_cfg['hop_size'],
# win_length=audio_cfg['window_size'],
# center=True,
# pad_mode="reflect",
# power=2.0,
# n_mels=64,
# norm=None,
# htk=True,
# f_min=audio_cfg['fmin'],
# f_max=audio_cfg['fmax']
# )
# we use log mel spectrogram as input
mel = torchaudio.transforms.AmplitudeToDB(top_db=None)(mel)
return mel.T # (T, n_mels)
def get_audio_features(
sample, audio_data, max_len, data_truncating, data_filling, audio_cfg
):
"""
Calculate and add audio features to sample.
Sample: a dict containing all the data of current sample.
audio_data: a tensor of shape (T) containing audio data.
max_len: the maximum length of audio data.
data_truncating: the method of truncating data.
data_filling: the method of filling data.
audio_cfg: a dict containing audio configuration. Comes from model_cfg['audio_cfg'].
"""
with torch.no_grad():
if len(audio_data) > max_len:
if data_truncating == "rand_trunc":
longer = torch.tensor([True])
elif data_truncating == "fusion":
# fusion
mel = get_mel(audio_data, audio_cfg)
# split to three parts
chunk_frames = (
max_len // audio_cfg["hop_size"] + 1
) # the +1 related to how the spectrogram is computed
total_frames = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is
# larger than max_len but smaller than max_len+hop_size.
# In this case, we just use the whole audio.
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([False])
else:
ranges = np.array_split(
list(range(0, total_frames - chunk_frames + 1)), 3
)
# print('total_frames-chunk_frames:', total_frames-chunk_frames,
# 'len(audio_data):', len(audio_data),
# 'chunk_frames:', chunk_frames,
# 'total_frames:', total_frames)
if len(ranges[1]) == 0:
# if the audio is too short, we just use the first chunk
ranges[1] = [0]
if len(ranges[2]) == 0:
# if the audio is too short, we just use the first chunk
ranges[2] = [0]
# randomly choose index for each part
idx_front = np.random.choice(ranges[0])
idx_middle = np.random.choice(ranges[1])
idx_back = np.random.choice(ranges[2])
# select mel
mel_chunk_front = mel[idx_front : idx_front + chunk_frames, :]
mel_chunk_middle = mel[idx_middle : idx_middle + chunk_frames, :]
mel_chunk_back = mel[idx_back : idx_back + chunk_frames, :]
# shrink the mel
mel_shrink = torchvision.transforms.Resize(size=[chunk_frames, 64])(
mel[None]
)[0]
# logging.info(f"mel_shrink.shape: {mel_shrink.shape}")
# stack
mel_fusion = torch.stack(
[mel_chunk_front, mel_chunk_middle, mel_chunk_back, mel_shrink],
dim=0,
)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([True])
else:
raise NotImplementedError(
f"data_truncating {data_truncating} not implemented"
)
# random crop to max_len (for compatibility)
overflow = len(audio_data) - max_len
idx = np.random.randint(0, overflow + 1)
audio_data = audio_data[idx : idx + max_len]
else: # padding if too short
if len(audio_data) < max_len: # do nothing if equal
if data_filling == "repeatpad":
n_repeat = int(max_len / len(audio_data))
audio_data = audio_data.repeat(n_repeat)
# audio_data = audio_data.unsqueeze(0).unsqueeze(0).unsqueeze(0)
# audio_data = F.interpolate(audio_data,size=max_len,mode="bicubic")[0,0,0]
audio_data = F.pad(
audio_data,
(0, max_len - len(audio_data)),
mode="constant",
value=0,
)
elif data_filling == "pad":
audio_data = F.pad(
audio_data,
(0, max_len - len(audio_data)),
mode="constant",
value=0,
)
elif data_filling == "repeat":
n_repeat = int(max_len / len(audio_data))
audio_data = audio_data.repeat(n_repeat + 1)[:max_len]
else:
raise NotImplementedError(
f"data_filling {data_filling} not implemented"
)
if data_truncating == "fusion":
mel = get_mel(audio_data, audio_cfg)
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([False])
sample["longer"] = longer
sample["waveform"] = audio_data
return sample
def preprocess(
sample,
audio_ext,
text_ext,
max_len,
audio_cfg,
class_index_dict=None,
data_filling="pad",
data_truncating="rand_trunc",
text_augment_selection=None,
):
"""
Preprocess a single sample for wdsdataloader.
"""
audio_data, orig_sr = sf.read(io.BytesIO(sample[audio_ext]))
audio_data = int16_to_float32(float32_to_int16(audio_data))
audio_data = torch.tensor(audio_data).float()
# TODO: (yusong) to be include in the future
# # if torchaudio not installed, use soundfile to load audio
# if torchaudio is None:
# audio_data, orig_sr = sf.read(io.BytesIO(sample[audio_ext]))
# audio_data = torch.tensor(audio_data).float()
# else:
# # https://github.com/webdataset/webdataset/blob/main/webdataset/autodecode.py
# with tempfile.TemporaryDirectory() as dirname:
# os.makedirs(dirname, exist_ok=True)
# fname = os.path.join(dirname, f"file.flac")
# with open(fname, "wb") as stream:
# stream.write(sample[audio_ext])
# audio_data, orig_sr = torchaudio.load(fname)
# audio_data = audio_data[0, :].float()
sample = get_audio_features(
sample, audio_data, max_len, data_truncating, data_filling, audio_cfg
)
del sample[audio_ext]
try:
json_dict_raw = json.loads(sample[text_ext].decode("utf-8"))
except:
print("sample[__url__]:", sample["__url__"])
# For selecting augmented text from dataset
if text_augment_selection is None or text_augment_selection == "none":
texts = json_dict_raw["text"]
elif text_augment_selection == "all":
if "text_augment_all" in json_dict_raw.keys():
texts = json_dict_raw["text_augment_all"]
else:
texts = json_dict_raw["text"]
elif text_augment_selection == "augment_only":
if "text_augment_all" in json_dict_raw.keys():
if json_dict_raw["text_augment_t5"] is None:
texts = json_dict_raw["text"]
else:
texts = json_dict_raw["text_augment_t5"]
else:
texts = json_dict_raw["text"]
else:
raise NotImplementedError(
f"text_augment_selection {text_augment_selection} not implemented"
)
sample["full_text"] = texts
if isinstance(texts, list) and isinstance(texts[0], str) and len(texts) > 1:
texts = random.choice(texts)
sample["raw_text"] = texts
sample["text"] = tokenizer(texts) # text shape: [num_token]
if class_index_dict is not None:
# https://stackoverflow.com/questions/48004243/how-to-share-large-read-only-dictionary-list-across-processes-in-multiprocessing
# https://stackoverflow.com/questions/45693949/storing-strings-in-a-multiprocessing-sharedctypes-array
# key, val = class_index_dict
# key = key[:].split('\n')
# _dict = {k: v for k, v in zip(key, val)}
sample["class_label"] = np.zeros(len(class_index_dict.keys()))
for x in json_dict_raw["tag"]:
sample["class_label"][class_index_dict[x]] = 1
sample["class_label"] = torch.tensor(sample["class_label"]).float()
del sample[text_ext]
sample["audio_name"] = sample["__key__"].split("/")[-1] + "." + audio_ext
sample["text_name"] = sample["__key__"].split("/")[-1] + "." + text_ext
sample["audio_orig_sr"] = orig_sr
return sample
def collate_fn(batch):
"""
Collate function for wdsdataloader.
batch: a list of dict, each dict is a sample
"""
# concatenate values in each dictionary. if it is a tensor, concatenate. if it is a list, extend.
batch_dict = {}
for k in batch[0].keys():
if isinstance(batch[0][k], dict): # dealwith bert tokenizer output
batch_dict[k] = {}
for kk in batch[0][k].keys():
tmp = []
for i in range(len(batch)):
tmp.append(batch[i][k][kk])
batch_dict[k][kk] = torch.vstack(tmp)
elif isinstance(batch[0][k], torch.Tensor):
batch_dict[k] = torch.stack([sample[k] for sample in batch])
elif isinstance(batch[0][k], np.ndarray):
batch_dict[k] = torch.tensor(np.stack([sample[k] for sample in batch]))
else:
batch_dict[k] = [sample[k] for sample in batch]
return batch_dict
def get_wds_dataset(
args,
model_cfg,
is_train,
audio_ext="flac",
text_ext="json",
max_len=480000,
proportion=1.0,
sizefilepath_=None,
is_local=None,
):
"""
Get a dataset for wdsdataloader.
"""
if is_local is None and (not args.remotedata is None):
is_local = not args.remotedata
input_shards = args.train_data if is_train else args.val_data
assert input_shards is not None
if not sizefilepath_ is None:
sizefilepath = sizefilepath_
else:
sizefilepath = os.path.join(os.path.dirname(input_shards[0]), "sizes.json")
if proportion != 1.0:
num_samples, num_shards, input_shards, _ = sample_prop(
sizefilepath, input_shards, proportion, is_local=is_local
)
else:
num_samples, num_shards = get_dataset_size(
input_shards, sizefilepath_=sizefilepath_, is_local=is_local
)
if not num_samples:
if is_train:
num_samples = args.train_num_samples
if not num_samples:
raise RuntimeError(
"Currently, number of dataset samples must be specified for training dataset. "
"Please specify via `--train-num-samples` if no dataset length info present."
)
else:
num_samples = (
args.val_num_samples or 0
) # eval will just exhaust the iterator if not specified
pipeline = [wds.SimpleShardList(input_shards)]
# at this point we have an iterator over all the shards
# TODO: (yusong): add a if statement of distributed. If not, we don't need to split_by_node
if is_train or args.parallel_eval:
pipeline.extend(
[
wds.detshuffle(
bufsize=_SHARD_SHUFFLE_SIZE,
initial=_SHARD_SHUFFLE_INITIAL,
seed=args.seed,
),
wds.split_by_node,
wds.split_by_worker,
# at this point, we have an iterator over the shards assigned to each worker at each node
wds.tarfile_to_samples(handler=log_and_continue),
wds.shuffle(
bufsize=_SAMPLE_SHUFFLE_SIZE,
initial=_SAMPLE_SHUFFLE_INITIAL,
rng=random.Random(args.seed),
),
# wds.repeatedly, # FIXME determine if this is beneficial
]
)
else:
pipeline.extend(
[
wds.split_by_worker,
# at this point, we have an iterator over the shards assigned to each worker
wds.tarfile_to_samples(handler=log_and_continue),
]
)
pipeline.append(
wds.map(
partial(
preprocess,
audio_ext=audio_ext,
text_ext=text_ext,
max_len=max_len,
audio_cfg=model_cfg["audio_cfg"],
class_index_dict=copy.deepcopy(args.class_index_dict),
data_filling=args.data_filling,
data_truncating=args.data_truncating,
text_augment_selection=args.text_augment_selection,
)
),
)
pipeline.append(
wds.batched(
args.batch_size,
partial=not (is_train or args.parallel_eval),
collation_fn=collate_fn,
)
)
dataset = wds.DataPipeline(*pipeline)
if is_train or args.parallel_eval:
# (yusong): Currently parallel evaluation will be not precise as we are repeat the last few samples.
# (yusong): See comments below.
# roll over and repeat a few samples to get same number of full batches on each node
global_batch_size = args.batch_size * args.world_size
num_batches = math.ceil(num_samples / global_batch_size)
num_workers = max(1, args.workers)
num_worker_batches = math.ceil(
num_batches / num_workers
) # per dataloader worker
num_batches = num_worker_batches * num_workers
num_samples = num_batches * global_batch_size
dataset = dataset.with_epoch(
num_worker_batches
) # each worker is iterating over this
else:
# last batches are partial, eval is done on single (master) node
num_batches = math.ceil(num_samples / args.batch_size)
kwargs = {}
if args.horovod: # multi-node training on summit
kwargs["multiprocessing_context"] = "forkserver"
dataloader = wds.WebLoader(
dataset, batch_size=None, shuffle=False, num_workers=args.workers, **kwargs
)
# FIXME not clear which approach is better, with_epoch before vs after dataloader?
# hoping to resolve via https://github.com/webdataset/webdataset/issues/169
# if is_train:
# # roll over and repeat a few samples to get same number of full batches on each node
# global_batch_size = args.batch_size * args.world_size
# num_batches = math.ceil(num_samples / global_batch_size)
# num_workers = max(1, args.workers)
# num_batches = math.ceil(num_batches / num_workers) * num_workers
# num_samples = num_batches * global_batch_size
# dataloader = dataloader.with_epoch(num_batches)
# else:
# # last batches are partial, eval is done on single (master) node
# num_batches = math.ceil(num_samples / args.batch_size)
# add meta-data to dataloader instance for convenience
dataloader.num_batches = num_batches
dataloader.num_samples = num_samples
return DataInfo(dataloader, None)
def wds_batch_list2dict(
batch,
keys=[
"__url__",
"__key__",
"waveform",
"text",
"raw_text",
"audio_name",
"text_name",
"audio_orig_sr",
],
):
"""
Return a dictionary of the batch, with keys as the names of the fields.
"""
assert len(keys) == len(
batch
), "batch must have same number of keys as keys argument"
return {keys[i]: batch[i] for i in range(len(batch))}
def get_csv_dataset(args, preprocess_fn, is_train):
input_filename = args.train_data if is_train else args.val_data
assert input_filename
dataset = CsvDataset(
input_filename,
preprocess_fn,
img_key=args.csv_img_key,
caption_key=args.csv_caption_key,
sep=args.csv_separator,
)
num_samples = len(dataset)
sampler = DistributedSampler(dataset) if args.distributed and is_train else None
shuffle = is_train and sampler is None
dataloader = DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=shuffle,
num_workers=args.workers,
pin_memory=True,
sampler=sampler,
drop_last=is_train,
)
dataloader.num_samples = num_samples
dataloader.num_batches = len(dataloader)
return DataInfo(dataloader, sampler)
def get_toy_dataset(args, model_cfg, is_train):
index_path = args.train_data if is_train else args.val_data
ipc_path = args.train_ipc if is_train else args.val_ipc
assert index_path and ipc_path
eval_mode = not is_train
dataset = ToyDataset(index_path, ipc_path, model_cfg, eval_mode=eval_mode)
num_samples = len(dataset)
sampler = (
DistributedSampler(dataset, shuffle=False)
if args.distributed and is_train
else None
)
dataloader = DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
sampler=sampler,
drop_last=is_train,
)
dataloader.num_samples = num_samples
dataloader.num_batches = len(dataloader)
return DataInfo(dataloader, sampler)
def get_dataset_fn(data_path, dataset_type):
if dataset_type == "webdataset":
return get_wds_dataset
elif dataset_type == "csv":
return get_csv_dataset
elif dataset_type == "auto":
ext = data_path.split(".")[-1]
if ext in ["csv", "tsv"]:
return get_csv_dataset
elif ext in ["tar"]:
return get_wds_dataset
else:
raise ValueError(
f"Tried to figure out dataset type, but failed for extention {ext}."
)
elif dataset_type == "toy":
return get_toy_dataset
else:
raise ValueError(f"Unsupported dataset type: {dataset_type}")
def get_data(args, model_cfg):
data = {}
args.class_index_dict = load_class_label(args.class_label_path)
if args.datasetinfos is None:
args.datasetinfos = ["train", "unbalanced_train", "balanced_train"]
if args.dataset_type == "webdataset":
args.train_data = get_tar_path_from_dataset_name(
args.datasetnames,
args.datasetinfos,
islocal=not args.remotedata,
proportion=args.dataset_proportion,
dataset_path=args.datasetpath,
full_dataset=args.full_train_dataset,
)
if args.full_train_dataset is None:
args.full_train_dataset = []
if args.exclude_eval_dataset is None:
args.exclude_eval_dataset = []
excluded_eval_datasets = args.full_train_dataset + args.exclude_eval_dataset
val_dataset_names = (
[n for n in args.datasetnames if n not in excluded_eval_datasets]
if excluded_eval_datasets
else args.datasetnames
)
args.val_dataset_names = val_dataset_names
args.val_data = get_tar_path_from_dataset_name(
val_dataset_names,
["valid", "test", "eval"],
islocal=not args.remotedata,
proportion=1,
dataset_path=args.datasetpath,
full_dataset=None,
)
if args.train_data:
data["train"] = get_dataset_fn(args.train_data, args.dataset_type)(
args, model_cfg, is_train=True
)
if args.val_data:
data["val"] = get_dataset_fn(args.val_data, args.dataset_type)(
args, model_cfg, is_train=False
)
return data
|