File size: 2,881 Bytes
cb8d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Import the libraries
import gradio as gr
import joblib
import pandas as pd

# Run the training script placed in the same directory as app.py
# The training script will train and persist a linear regression
# model with the filename 'model.joblib'


# Load the freshly trained model from disk
model = joblib.load('model.joblib')

# Prepare the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent

scheduler = CommitScheduler(
    repo_id="-----------",  # provide a name "insurance-charge-mlops-logs" for the repo_id
    repo_type="dataset",
    folder_path=log_folder,
    path_in_repo="data",
    every=2
)

# Define the predict function which will take features, convert to dataframe and make predictions using the saved model
def predict_insu_charges(age, bmi, children, sex, smoker, region):
    sample = {
        'Age': age,
        'bmi' : bmi,
        'children' : children,
        'sex' : sex,
        'smoker' : smoker,
        'region' : region
    }
    data_point = pd.DataFrame([sample])
    result = model.predict(data_point)
    print(result)
    return result 

# the functions runs when 'Submit' is clicked or when a API request is made


    # While the prediction is made, log both the inputs and outputs to a  log file
    # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
    # access

    with scheduler.lock:
        with log_file.open("a") as f:
            f.write(json.dumps(
                {
                    'age': age,
                    'bmi': bmi,
                    'children': children,
                    'sex': sex,
                    'smoker': smoker,
                    'region': region,
                    'prediction': prediction[0]
                }
            ))
            f.write("\n")

    return prediction[0]

# Set up UI components for input and output
age_input = gr.number(label="Age")
bmi_input = gr.number(label="BMI")
children_input = gr.number(label="Number of children")
sex_input = gr.Dropdown(['Female','Male'],label="Age")
smoker_input = gr.Dropdown(['Yes','No'],label="smoker?")
region_input = gr.Dropdown(['SouthWest','NorthWest','SouthEast','NorthEast'],label="Age")
                      
model_output = gr.Label(label="charges")

# Create the gradio interface, make title "HealthyLife Insurance Charge Prediction"
demo = gr.Interface(fn=predict_insu_charges,
                    inputs = ['age_input', 'bmi_input','children_input','sex_input','smoker_input','region_input'],
                    outputs = model_output, 
                    title = "HealthyLife Insurance Charge Prediction",
                    description = "For predicting insurance charges",
                    allow_flagging = "auto")

interface.launch(share=True)

# Launch with a load balancer
demo.queue()
demo.launch(share=False)