Spaces:
Runtime error
Runtime error
File size: 2,881 Bytes
cb8d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
# Import the libraries
import gradio as gr
import joblib
import pandas as pd
# Run the training script placed in the same directory as app.py
# The training script will train and persist a linear regression
# model with the filename 'model.joblib'
# Load the freshly trained model from disk
model = joblib.load('model.joblib')
# Prepare the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent
scheduler = CommitScheduler(
repo_id="-----------", # provide a name "insurance-charge-mlops-logs" for the repo_id
repo_type="dataset",
folder_path=log_folder,
path_in_repo="data",
every=2
)
# Define the predict function which will take features, convert to dataframe and make predictions using the saved model
def predict_insu_charges(age, bmi, children, sex, smoker, region):
sample = {
'Age': age,
'bmi' : bmi,
'children' : children,
'sex' : sex,
'smoker' : smoker,
'region' : region
}
data_point = pd.DataFrame([sample])
result = model.predict(data_point)
print(result)
return result
# the functions runs when 'Submit' is clicked or when a API request is made
# While the prediction is made, log both the inputs and outputs to a log file
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
# access
with scheduler.lock:
with log_file.open("a") as f:
f.write(json.dumps(
{
'age': age,
'bmi': bmi,
'children': children,
'sex': sex,
'smoker': smoker,
'region': region,
'prediction': prediction[0]
}
))
f.write("\n")
return prediction[0]
# Set up UI components for input and output
age_input = gr.number(label="Age")
bmi_input = gr.number(label="BMI")
children_input = gr.number(label="Number of children")
sex_input = gr.Dropdown(['Female','Male'],label="Age")
smoker_input = gr.Dropdown(['Yes','No'],label="smoker?")
region_input = gr.Dropdown(['SouthWest','NorthWest','SouthEast','NorthEast'],label="Age")
model_output = gr.Label(label="charges")
# Create the gradio interface, make title "HealthyLife Insurance Charge Prediction"
demo = gr.Interface(fn=predict_insu_charges,
inputs = ['age_input', 'bmi_input','children_input','sex_input','smoker_input','region_input'],
outputs = model_output,
title = "HealthyLife Insurance Charge Prediction",
description = "For predicting insurance charges",
allow_flagging = "auto")
interface.launch(share=True)
# Launch with a load balancer
demo.queue()
demo.launch(share=False)
|