File size: 1,733 Bytes
cc7663c
 
f5bc984
cc7663c
 
 
 
 
f5bc984
6cbeedf
 
 
 
 
 
 
 
 
da63718
6cbeedf
0e43f0b
37f6179
a39c367
37f6179
c8691ae
c0a6979
37f6179
0e43f0b
6cbeedf
 
c8691ae
f5bc984
dcac4d1
 
 
068f083
cc7663c
f5bc984
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import openai
import os
import gradio as gr
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())


openai.api_key  = os.getenv('OPENAI_API_KEY')

def get_completion(prompt, model="gpt-3.5-turbo"):
    messages = [{"role": "user", "content": prompt}]
    response = openai.ChatCompletion.create(
        model=model,
        messages=messages,
        temperature=0, # this is the degree of randomness of the model's output
    )
    return response.choices[0].message["content"]

def greet(input):
	prompt = f"""
Determine the product or solution, the problem being solved, features, target customer that are being discussed in the \
following text, which is delimited by triple backticks. Then, pretend that you are the target customer. \
State if you would use this product and elaborate on why. Also state if you would pay for it and elaborate on why.\

Format your response as a JSON object with \
'solution', 'problem', 'features', 'target_customer', 'fg_will_use', 'reason_to_use', 'fg_will_pay', 'reason_to_pay' as the keys.\

Text sample: '''{input}'''
	"""
	response = get_completion(prompt)
	return response

#iface = gr.Interface(fn=greet, inputs="text", outputs="text")
#iface.launch()

#iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"])
iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Elevator pitch", lines=3)], outputs="text")
iface.launch()