File size: 16,110 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Utils for processing video dataset features."""

from typing import Optional, Tuple
import tensorflow as tf, tf_keras


def _sample_or_pad_sequence_indices(sequence: tf.Tensor, num_steps: int,
                                    stride: int,
                                    offset: tf.Tensor) -> tf.Tensor:
  """Returns indices to take for sampling or padding sequences to fixed size."""
  sequence_length = tf.shape(sequence)[0]
  sel_idx = tf.range(sequence_length)

  # Repeats sequence until num_steps are available in total.
  max_length = num_steps * stride + offset
  num_repeats = tf.math.floordiv(max_length + sequence_length - 1,
                                 sequence_length)
  sel_idx = tf.tile(sel_idx, [num_repeats])

  steps = tf.range(offset, offset + num_steps * stride, stride)
  return tf.gather(sel_idx, steps)


def sample_linspace_sequence(sequence: tf.Tensor, num_windows: int,
                             num_steps: int, stride: int) -> tf.Tensor:
  """Samples `num_windows` segments from sequence with linearly spaced offsets.

  The samples are concatenated in a single `tf.Tensor` in order to have the same
  format structure per timestep (e.g. a single frame). If `num_steps` * `stride`
  is bigger than the number of timesteps, the sequence is repeated. This
  function can be used in evaluation in order to extract enough segments to span
  the entire sequence.

  Args:
    sequence: Any tensor where the first dimension is timesteps.
    num_windows: Number of windows retrieved from the sequence.
    num_steps: Number of steps (e.g. frames) to take.
    stride: Distance to sample between timesteps.

  Returns:
    A single `tf.Tensor` with first dimension `num_windows` * `num_steps`. The
    tensor contains the concatenated list of `num_windows` tensors which offsets
    have been linearly spaced from input.
  """
  sequence_length = tf.shape(sequence)[0]
  max_offset = tf.maximum(0, sequence_length - num_steps * stride)
  offsets = tf.linspace(0.0, tf.cast(max_offset, tf.float32), num_windows)
  offsets = tf.cast(offsets, tf.int32)

  all_indices = []
  for i in range(num_windows):
    all_indices.append(
        _sample_or_pad_sequence_indices(
            sequence=sequence,
            num_steps=num_steps,
            stride=stride,
            offset=offsets[i]))

  indices = tf.concat(all_indices, axis=0)
  indices.set_shape((num_windows * num_steps,))
  return tf.gather(sequence, indices)


def sample_sequence(sequence: tf.Tensor,
                    num_steps: int,
                    random: bool,
                    stride: int,
                    seed: Optional[int] = None) -> tf.Tensor:
  """Samples a single segment of size `num_steps` from a given sequence.

  If `random` is not `True`, this function will simply sample the central window
  of the sequence. Otherwise, a random offset will be chosen in a way that the
  desired `num_steps` might be extracted from the sequence.

  Args:
    sequence: Any tensor where the first dimension is timesteps.
    num_steps: Number of steps (e.g. frames) to take.
    random: A boolean indicating whether to random sample the single window. If
      `True`, the offset is randomized. If `False`, the middle frame minus half
      of `num_steps` is the first frame.
    stride: Distance to sample between timesteps.
    seed: A deterministic seed to use when sampling.

  Returns:
    A single `tf.Tensor` with first dimension `num_steps` with the sampled
    segment.
  """
  sequence_length = tf.shape(sequence)[0]

  if random:
    sequence_length = tf.cast(sequence_length, tf.float32)
    frame_stride = tf.cast(stride, tf.float32)
    max_offset = tf.cond(
        sequence_length > (num_steps - 1) * frame_stride,
        lambda: sequence_length - (num_steps - 1) * frame_stride,
        lambda: sequence_length)
    offset = tf.random.uniform((),
                               maxval=tf.cast(max_offset, dtype=tf.int32),
                               dtype=tf.int32,
                               seed=seed)
  else:
    offset = (sequence_length - num_steps * stride) // 2
    offset = tf.maximum(0, offset)

  indices = _sample_or_pad_sequence_indices(
      sequence=sequence, num_steps=num_steps, stride=stride, offset=offset)
  indices.set_shape((num_steps,))

  return tf.gather(sequence, indices)


def sample_segment_sequence(sequence: tf.Tensor,
                            num_frames: int,
                            is_training: bool,
                            seed: Optional[int] = None) -> tf.Tensor:
  """Samples a single segment of size `num_frames` from a given sequence.

  This function follows the temporal segment network sampling style
  (https://arxiv.org/abs/1608.00859). The video sequence would be divided into
  `num_frames` non-overlapping segments with same length. If `is_training` is
  `True`, we would randomly sampling one frame for each segment, and when
  `is_training` is `False`, only the center frame of each segment is sampled.

  Args:
    sequence: Any tensor where the first dimension is timesteps.
    num_frames: Number of frames to take.
    is_training: A boolean indicating sampling in training or evaluation mode.
    seed: A deterministic seed to use when sampling.

  Returns:
    A single `tf.Tensor` with first dimension `num_steps` with the sampled
    segment.
  """
  sequence_length = tf.shape(sequence)[0]

  sequence_length = tf.cast(sequence_length, tf.float32)
  segment_length = tf.cast(sequence_length // num_frames, tf.float32)
  segment_indices = tf.linspace(0.0, sequence_length, num_frames + 1)
  segment_indices = tf.cast(segment_indices, tf.int32)

  if is_training:
    segment_length = tf.cast(segment_length, tf.int32)
    # pylint:disable=g-long-lambda
    segment_offsets = tf.cond(
        segment_length == 0,
        lambda: tf.zeros(shape=(num_frames,), dtype=tf.int32),
        lambda: tf.random.uniform(
            shape=(num_frames,),
            minval=0,
            maxval=segment_length,
            dtype=tf.int32,
            seed=seed))
    # pylint:disable=g-long-lambda

  else:
    # Only sampling central frame during inference for being deterministic.
    segment_offsets = tf.ones(
        shape=(num_frames,), dtype=tf.int32) * tf.cast(
            segment_length // 2, dtype=tf.int32)

  indices = segment_indices[:-1] + segment_offsets
  indices.set_shape((num_frames,))

  return tf.gather(sequence, indices)


def decode_jpeg(image_string: tf.Tensor, channels: int = 0) -> tf.Tensor:
  """Decodes JPEG raw bytes string into a RGB uint8 Tensor.

  Args:
    image_string: A `tf.Tensor` of type strings with the raw JPEG bytes where
      the first dimension is timesteps.
    channels: Number of channels of the JPEG image. Allowed values are 0, 1 and
      3. If 0, the number of channels will be calculated at runtime and no
      static shape is set.

  Returns:
    A Tensor of shape [T, H, W, C] of type uint8 with the decoded images.
  """
  return tf.map_fn(
      lambda x: tf.image.decode_jpeg(x, channels=channels),
      image_string,
      back_prop=False,
      dtype=tf.uint8)


def decode_image(image_string: tf.Tensor, channels: int = 0) -> tf.Tensor:
  """Decodes PNG or JPEG raw bytes string into a RGB uint8 Tensor.

  Args:
    image_string: A `tf.Tensor` of type strings with the raw PNG or JPEG bytes
      where the first dimension is timesteps.
    channels: Number of channels of the PNG image. Allowed values are 0, 1 and
      3. If 0, the number of channels will be calculated at runtime and no
      static shape is set.

  Returns:
    A Tensor of shape [T, H, W, C] of type uint8 with the decoded images.
  """
  return tf.map_fn(
      lambda x: tf.image.decode_image(  # pylint: disable=g-long-lambda
          x, channels=channels, expand_animations=False),
      image_string,
      back_prop=False,
      dtype=tf.uint8,
  )


def crop_image(
    frames: tf.Tensor,
    target_height: int,
    target_width: int,
    random: bool = False,
    num_crops: int = 1,
    seed: Optional[int] = None,
) -> tf.Tensor:
  """Crops the image sequence of images.

  If requested size is bigger than image size, image is padded with 0. If not
  random cropping, a central crop is performed if num_crops is 1.

  Args:
    frames: A Tensor of dimension [timesteps, in_height, in_width, channels].
    target_height: Target cropped image height.
    target_width: Target cropped image width.
    random: A boolean indicating if crop should be randomized.
    num_crops: Number of crops (support 1 for central crop and 3 for 3-crop).
    seed: A deterministic seed to use when random cropping.

  Returns:
    A Tensor of shape [timesteps, out_height, out_width, channels] of type uint8
    with the cropped images.
  """
  if random:
    # Random spatial crop.
    shape = tf.shape(frames)
    # If a static_shape is available (e.g. when using this method from add_image
    # method), it will be used to have an output tensor with static shape.
    static_shape = frames.shape.as_list()
    seq_len = shape[0] if static_shape[0] is None else static_shape[0]
    channels = shape[3] if static_shape[3] is None else static_shape[3]
    frames = tf.image.random_crop(
        frames, (seq_len, target_height, target_width, channels), seed)
  else:
    if num_crops == 1:
      # Central crop or pad.
      frames = tf.image.resize_with_crop_or_pad(frames, target_height,
                                                target_width)

    elif num_crops == 3:
      # Three-crop evaluation.
      shape = tf.shape(frames)
      static_shape = frames.shape.as_list()
      seq_len = shape[0] if static_shape[0] is None else static_shape[0]
      height = shape[1] if static_shape[1] is None else static_shape[1]
      width = shape[2] if static_shape[2] is None else static_shape[2]
      channels = shape[3] if static_shape[3] is None else static_shape[3]

      size = tf.convert_to_tensor(
          (seq_len, target_height, target_width, channels))

      offset_1 = tf.broadcast_to([0, 0, 0, 0], [4])
      # pylint:disable=g-long-lambda
      offset_2 = tf.cond(
          tf.greater_equal(height, width),
          true_fn=lambda: tf.broadcast_to([
              0, tf.cast(height, tf.float32) / 2 - target_height // 2, 0, 0
          ], [4]),
          false_fn=lambda: tf.broadcast_to([
              0, 0, tf.cast(width, tf.float32) / 2 - target_width // 2, 0
          ], [4]))
      offset_3 = tf.cond(
          tf.greater_equal(height, width),
          true_fn=lambda: tf.broadcast_to(
              [0, tf.cast(height, tf.float32) - target_height, 0, 0], [4]),
          false_fn=lambda: tf.broadcast_to(
              [0, 0, tf.cast(width, tf.float32) - target_width, 0], [4]))
      # pylint:disable=g-long-lambda

      crops = []
      for offset in [offset_1, offset_2, offset_3]:
        offset = tf.cast(tf.math.round(offset), tf.int32)
        crops.append(tf.slice(frames, offset, size))
      frames = tf.concat(crops, axis=0)

    else:
      raise NotImplementedError(
          f"Only 1-crop and 3-crop are supported. Found {num_crops!r}.")

  return frames


def resize_smallest(frames: tf.Tensor, min_resize: int) -> tf.Tensor:
  """Resizes frames so that min(`height`, `width`) is equal to `min_resize`.

  This function will not do anything if the min(`height`, `width`) is already
  equal to `min_resize`. This allows to save compute time.

  Args:
    frames: A Tensor of dimension [timesteps, input_h, input_w, channels].
    min_resize: Minimum size of the final image dimensions.

  Returns:
    A Tensor of shape [timesteps, output_h, output_w, channels] of type
      frames.dtype where min(output_h, output_w) = min_resize.
  """
  shape = tf.shape(frames)
  input_h = shape[1]
  input_w = shape[2]

  output_h = tf.maximum(min_resize, (input_h * min_resize) // input_w)
  output_w = tf.maximum(min_resize, (input_w * min_resize) // input_h)

  def resize_fn():
    frames_resized = tf.image.resize(frames, (output_h, output_w))
    return tf.cast(frames_resized, frames.dtype)

  should_resize = tf.math.logical_or(
      tf.not_equal(input_w, output_w), tf.not_equal(input_h, output_h))
  frames = tf.cond(should_resize, resize_fn, lambda: frames)

  return frames


def random_crop_resize(frames: tf.Tensor, output_h: int, output_w: int,
                       num_frames: int, num_channels: int,
                       aspect_ratio: Tuple[float, float],
                       area_range: Tuple[float, float]) -> tf.Tensor:
  """First crops clip with jittering and then resizes to (output_h, output_w).

  Args:
    frames: A Tensor of dimension [timesteps, input_h, input_w, channels].
    output_h: Resized image height.
    output_w: Resized image width.
    num_frames: Number of input frames per clip.
    num_channels: Number of channels of the clip.
    aspect_ratio: Float tuple with the aspect range for cropping.
    area_range: Float tuple with the area range for cropping.

  Returns:
    A Tensor of shape [timesteps, output_h, output_w, channels] of type
      frames.dtype.
  """
  shape = tf.shape(frames)
  seq_len, _, _, channels = shape[0], shape[1], shape[2], shape[3]
  bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
  factor = output_w / output_h
  aspect_ratio = (aspect_ratio[0] * factor, aspect_ratio[1] * factor)
  sample_distorted_bbox = tf.image.sample_distorted_bounding_box(
      shape[1:],
      bounding_boxes=bbox,
      min_object_covered=0.1,
      aspect_ratio_range=aspect_ratio,
      area_range=area_range,
      max_attempts=100,
      use_image_if_no_bounding_boxes=True)
  bbox_begin, bbox_size, _ = sample_distorted_bbox
  offset_y, offset_x, _ = tf.unstack(bbox_begin)
  target_height, target_width, _ = tf.unstack(bbox_size)
  size = tf.convert_to_tensor((seq_len, target_height, target_width, channels))
  offset = tf.convert_to_tensor((0, offset_y, offset_x, 0))
  frames = tf.slice(frames, offset, size)
  frames = tf.cast(tf.image.resize(frames, (output_h, output_w)), frames.dtype)
  frames.set_shape((num_frames, output_h, output_w, num_channels))
  return frames


def random_flip_left_right(frames: tf.Tensor,
                           seed: Optional[int] = None) -> tf.Tensor:
  """Flips all the frames with a probability of 50%.

  Args:
    frames: A Tensor of shape [timesteps, input_h, input_w, channels].
    seed: A seed to use for the random sampling.

  Returns:
    A Tensor of shape [timesteps, output_h, output_w, channels] eventually
    flipped left right.
  """
  is_flipped = tf.random.uniform((),
                                 minval=0,
                                 maxval=2,
                                 dtype=tf.int32,
                                 seed=seed)

  frames = tf.cond(
      tf.equal(is_flipped, 1),
      true_fn=lambda: tf.image.flip_left_right(frames),
      false_fn=lambda: frames)
  return frames


def normalize_image(frames: tf.Tensor,
                    zero_centering_image: bool,
                    dtype: tf.dtypes.DType = tf.float32) -> tf.Tensor:
  """Normalizes images.

  Args:
    frames: A Tensor of numbers.
    zero_centering_image: If True, results are in [-1, 1], if False, results are
      in [0, 1].
    dtype: Type of output Tensor.

  Returns:
    A Tensor of same shape as the input and of the given type.
  """
  frames = tf.cast(frames, dtype)
  if zero_centering_image:
    return frames * (2.0 / 255.0) - 1.0
  else:
    return frames / 255.0