File size: 8,125 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tensorflow implementation of non max suppression."""

# Import libraries
import tensorflow as tf, tf_keras

from official.vision.ops import box_ops


NMS_TILE_SIZE = 512


def _self_suppression(iou, _, iou_sum):
  batch_size = tf.shape(iou)[0]
  can_suppress_others = tf.cast(
      tf.reshape(tf.reduce_max(iou, 1) <= 0.5, [batch_size, -1, 1]), iou.dtype)
  iou_suppressed = tf.reshape(
      tf.cast(tf.reduce_max(can_suppress_others * iou, 1) <= 0.5, iou.dtype),
      [batch_size, -1, 1]) * iou
  iou_sum_new = tf.reduce_sum(iou_suppressed, [1, 2])
  return [
      iou_suppressed,
      tf.reduce_any(iou_sum - iou_sum_new > 0.5), iou_sum_new
  ]


def _cross_suppression(boxes, box_slice, iou_threshold, inner_idx):
  batch_size = tf.shape(boxes)[0]
  new_slice = tf.slice(boxes, [0, inner_idx * NMS_TILE_SIZE, 0],
                       [batch_size, NMS_TILE_SIZE, 4])
  iou = box_ops.bbox_overlap(new_slice, box_slice)
  ret_slice = tf.expand_dims(
      tf.cast(tf.reduce_all(iou < iou_threshold, [1]), box_slice.dtype),
      2) * box_slice
  return boxes, ret_slice, iou_threshold, inner_idx + 1


def _suppression_loop_body(boxes, iou_threshold, output_size, idx):
  """Process boxes in the range [idx*NMS_TILE_SIZE, (idx+1)*NMS_TILE_SIZE).

  Args:
    boxes: a tensor with a shape of [batch_size, anchors, 4].
    iou_threshold: a float representing the threshold for deciding whether boxes
      overlap too much with respect to IOU.
    output_size: an int32 tensor of size [batch_size]. Representing the number
      of selected boxes for each batch.
    idx: an integer scalar representing induction variable.

  Returns:
    boxes: updated boxes.
    iou_threshold: pass down iou_threshold to the next iteration.
    output_size: the updated output_size.
    idx: the updated induction variable.
  """
  boxes_shape = tf.shape(boxes)
  num_tiles = boxes_shape[1] // NMS_TILE_SIZE
  batch_size = boxes_shape[0]

  # Iterates over tiles that can possibly suppress the current tile.
  box_slice = tf.slice(boxes, [0, idx * NMS_TILE_SIZE, 0],
                       [batch_size, NMS_TILE_SIZE, 4])
  _, box_slice, _, _ = tf.while_loop(
      lambda _boxes, _box_slice, _threshold, inner_idx: inner_idx < idx,
      _cross_suppression, [boxes, box_slice, iou_threshold,
                           tf.constant(0)])

  # Iterates over the current tile to compute self-suppression.
  iou = box_ops.bbox_overlap(box_slice, box_slice)
  mask = tf.expand_dims(
      tf.reshape(tf.range(NMS_TILE_SIZE), [1, -1]) > tf.reshape(
          tf.range(NMS_TILE_SIZE), [-1, 1]), 0)
  iou *= tf.cast(tf.logical_and(mask, iou >= iou_threshold), iou.dtype)
  suppressed_iou, _, _ = tf.while_loop(
      lambda _iou, loop_condition, _iou_sum: loop_condition, _self_suppression,
      [iou, tf.constant(True),
       tf.reduce_sum(iou, [1, 2])])
  suppressed_box = tf.reduce_sum(suppressed_iou, 1) > 0
  box_slice *= tf.expand_dims(1.0 - tf.cast(suppressed_box, box_slice.dtype), 2)

  # Uses box_slice to update the input boxes.
  mask = tf.reshape(
      tf.cast(tf.equal(tf.range(num_tiles), idx), boxes.dtype), [1, -1, 1, 1])
  boxes = tf.tile(tf.expand_dims(
      box_slice, [1]), [1, num_tiles, 1, 1]) * mask + tf.reshape(
          boxes, [batch_size, num_tiles, NMS_TILE_SIZE, 4]) * (1 - mask)
  boxes = tf.reshape(boxes, boxes_shape)

  # Updates output_size.
  output_size += tf.reduce_sum(
      tf.cast(tf.reduce_any(box_slice > 0, [2]), tf.int32), [1])
  return boxes, iou_threshold, output_size, idx + 1


def sorted_non_max_suppression_padded(scores,
                                      boxes,
                                      max_output_size,
                                      iou_threshold):
  """A wrapper that handles non-maximum suppression.

  Assumption:
    * The boxes are sorted by scores unless the box is a dot (all coordinates
      are zero).
    * Boxes with higher scores can be used to suppress boxes with lower scores.

  The overal design of the algorithm is to handle boxes tile-by-tile:

  boxes = boxes.pad_to_multiply_of(tile_size)
  num_tiles = len(boxes) // tile_size
  output_boxes = []
  for i in range(num_tiles):
    box_tile = boxes[i*tile_size : (i+1)*tile_size]
    for j in range(i - 1):
      suppressing_tile = boxes[j*tile_size : (j+1)*tile_size]
      iou = bbox_overlap(box_tile, suppressing_tile)
      # if the box is suppressed in iou, clear it to a dot
      box_tile *= _update_boxes(iou)
    # Iteratively handle the diagnal tile.
    iou = _box_overlap(box_tile, box_tile)
    iou_changed = True
    while iou_changed:
      # boxes that are not suppressed by anything else
      suppressing_boxes = _get_suppressing_boxes(iou)
      # boxes that are suppressed by suppressing_boxes
      suppressed_boxes = _get_suppressed_boxes(iou, suppressing_boxes)
      # clear iou to 0 for boxes that are suppressed, as they cannot be used
      # to suppress other boxes any more
      new_iou = _clear_iou(iou, suppressed_boxes)
      iou_changed = (new_iou != iou)
      iou = new_iou
    # remaining boxes that can still suppress others, are selected boxes.
    output_boxes.append(_get_suppressing_boxes(iou))
    if len(output_boxes) >= max_output_size:
      break

  Args:
    scores: a tensor with a shape of [batch_size, anchors].
    boxes: a tensor with a shape of [batch_size, anchors, 4].
    max_output_size: a scalar integer `Tensor` representing the maximum number
      of boxes to be selected by non max suppression.
    iou_threshold: a float representing the threshold for deciding whether boxes
      overlap too much with respect to IOU.

  Returns:
    nms_scores: a tensor with a shape of [batch_size, anchors]. It has same
      dtype as input scores.
    nms_proposals: a tensor with a shape of [batch_size, anchors, 4]. It has
      same dtype as input boxes.
  """
  batch_size = tf.shape(boxes)[0]
  num_boxes = tf.shape(boxes)[1]
  pad = tf.cast(
      tf.math.ceil(tf.cast(num_boxes, tf.float32) / NMS_TILE_SIZE),
      tf.int32) * NMS_TILE_SIZE - num_boxes
  boxes = tf.pad(tf.cast(boxes, tf.float32), [[0, 0], [0, pad], [0, 0]])
  scores = tf.pad(
      tf.cast(scores, tf.float32), [[0, 0], [0, pad]], constant_values=-1)
  num_boxes += pad

  def _loop_cond(unused_boxes, unused_threshold, output_size, idx):
    return tf.logical_and(
        tf.reduce_min(output_size) < max_output_size,
        idx < num_boxes // NMS_TILE_SIZE)

  selected_boxes, _, output_size, _ = tf.while_loop(
      _loop_cond, _suppression_loop_body, [
          boxes, iou_threshold,
          tf.zeros([batch_size], tf.int32),
          tf.constant(0)
      ])
  idx = num_boxes - tf.cast(
      tf.nn.top_k(
          tf.cast(tf.reduce_any(selected_boxes > 0, [2]), tf.int32) *
          tf.expand_dims(tf.range(num_boxes, 0, -1), 0), max_output_size)[0],
      tf.int32)
  idx = tf.minimum(idx, num_boxes - 1)
  idx = tf.reshape(
      idx + tf.reshape(tf.range(batch_size) * num_boxes, [-1, 1]), [-1])
  boxes = tf.reshape(
      tf.gather(tf.reshape(boxes, [-1, 4]), idx),
      [batch_size, max_output_size, 4])
  boxes = boxes * tf.cast(
      tf.reshape(tf.range(max_output_size), [1, -1, 1]) < tf.reshape(
          output_size, [-1, 1, 1]), boxes.dtype)
  scores = tf.reshape(
      tf.gather(tf.reshape(scores, [-1, 1]), idx),
      [batch_size, max_output_size])
  scores = scores * tf.cast(
      tf.reshape(tf.range(max_output_size), [1, -1]) < tf.reshape(
          output_size, [-1, 1]), scores.dtype)
  return scores, boxes