File size: 65,601 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Contains definitions of generators to generate the final detections."""
import contextlib
from typing import Any, Dict, List, Optional, Mapping, Sequence, Tuple

# Import libraries

import numpy as np
import tensorflow as tf, tf_keras

from official.vision.modeling.layers import edgetpu
from official.vision.ops import box_ops
from official.vision.ops import nms
from official.vision.ops import preprocess_ops


def _generate_detections_v1(
    boxes: tf.Tensor,
    scores: tf.Tensor,
    attributes: Optional[Mapping[str, tf.Tensor]] = None,
    pre_nms_top_k: int = 5000,
    pre_nms_score_threshold: float = 0.05,
    nms_iou_threshold: float = 0.5,
    max_num_detections: int = 100,
    soft_nms_sigma: Optional[float] = None,
):
  """Generates the final detections given the model outputs.

  The implementation unrolls the batch dimension and process images one by one.
  It required the batch dimension to be statically known and it is TPU
  compatible.

  Args:
    boxes: A `tf.Tensor` with shape `[batch_size, N, num_classes, 4]` or
      `[batch_size, N, 1, 4]` for box predictions on all feature levels. The N
      is the number of total anchors on all levels.
    scores: A `tf.Tensor` with shape `[batch_size, N, num_classes]`, which
      stacks class probability on all feature levels. The N is the number of
      total anchors on all levels. The num_classes is the number of classes
      predicted by the model. Note that the class_outputs here is the raw score.
    attributes: None or a dict of (attribute_name, attributes) pairs. Each
      attributes is a `tf.Tensor` with shape `[batch_size, N, num_classes,
      attribute_size]` or `[batch_size, N, 1, attribute_size]` for attribute
      predictions on all feature levels. The N is the number of total anchors on
      all levels. Can be None if no attribute learning is required.
    pre_nms_top_k: An `int` number of top candidate detections per class before
      NMS.
    pre_nms_score_threshold: A `float` representing the threshold for deciding
      when to remove boxes based on score.
    nms_iou_threshold: A `float` representing the threshold for deciding whether
      boxes overlap too much with respect to IOU.
    max_num_detections: A scalar representing maximum number of boxes retained
      over all classes.
    soft_nms_sigma: A `float` representing the sigma parameter for Soft NMS.
      When soft_nms_sigma=0.0 (which is default), we fall back to standard NMS.

  Returns:
    nms_boxes: A `float` type `tf.Tensor` of shape
      `[batch_size, max_num_detections, 4]` representing top detected boxes in
      `[y1, x1, y2, x2]`.
    nms_scores: A `float` type `tf.Tensor` of shape
      `[batch_size, max_num_detections]` representing sorted confidence scores
      for detected boxes. The values are between `[0, 1]`.
    nms_classes: An `int` type `tf.Tensor` of shape
      `[batch_size, max_num_detections]` representing classes for detected
      boxes.
    valid_detections: An `int` type `tf.Tensor` of shape `[batch_size]` only the
       top `valid_detections` boxes are valid detections.
    nms_attributes: None or a dict of (attribute_name, attributes). Each
      attribute is a `float` type `tf.Tensor` of shape
      `[batch_size, max_num_detections, attribute_size]` representing attribute
      predictions for detected boxes. Can be an empty dict if no attribute
      learning is required.
  """
  with tf.name_scope('generate_detections'):
    batch_size = scores.get_shape().as_list()[0]
    nmsed_boxes = []
    nmsed_classes = []
    nmsed_scores = []
    valid_detections = []
    if attributes:
      nmsed_attributes = {att_name: [] for att_name in attributes.keys()}
    else:
      nmsed_attributes = {}

    for i in range(batch_size):
      (
          nmsed_boxes_i,
          nmsed_scores_i,
          nmsed_classes_i,
          valid_detections_i,
          nmsed_att_i,
      ) = _generate_detections_per_image(
          boxes[i],
          scores[i],
          attributes={att_name: att[i] for att_name, att in attributes.items()}
          if attributes
          else {},
          pre_nms_top_k=pre_nms_top_k,
          pre_nms_score_threshold=pre_nms_score_threshold,
          nms_iou_threshold=nms_iou_threshold,
          max_num_detections=max_num_detections,
          soft_nms_sigma=soft_nms_sigma,
      )
      nmsed_boxes.append(nmsed_boxes_i)
      nmsed_scores.append(nmsed_scores_i)
      nmsed_classes.append(nmsed_classes_i)
      valid_detections.append(valid_detections_i)
      if attributes:
        for att_name in attributes.keys():
          nmsed_attributes[att_name].append(nmsed_att_i[att_name])

  nmsed_boxes = tf.stack(nmsed_boxes, axis=0)
  nmsed_scores = tf.stack(nmsed_scores, axis=0)
  nmsed_classes = tf.stack(nmsed_classes, axis=0)
  valid_detections = tf.stack(valid_detections, axis=0)
  if attributes:
    for att_name in attributes.keys():
      nmsed_attributes[att_name] = tf.stack(nmsed_attributes[att_name], axis=0)

  return (
      nmsed_boxes,
      nmsed_scores,
      nmsed_classes,
      valid_detections,
      nmsed_attributes,
  )


def _generate_detections_per_image(
    boxes: tf.Tensor,
    scores: tf.Tensor,
    attributes: Optional[Mapping[str, tf.Tensor]] = None,
    pre_nms_top_k: int = 5000,
    pre_nms_score_threshold: float = 0.05,
    nms_iou_threshold: float = 0.5,
    max_num_detections: int = 100,
    soft_nms_sigma: Optional[float] = None,
):
  """Generates the final detections per image given the model outputs.

  Args:
    boxes: A  `tf.Tensor` with shape `[N, num_classes, 4]` or `[N, 1, 4]`, which
      box predictions on all feature levels. The N is the number of total
      anchors on all levels.
    scores: A `tf.Tensor` with shape `[N, num_classes]`, which stacks class
      probability on all feature levels. The N is the number of total anchors on
      all levels. The num_classes is the number of classes predicted by the
      model. Note that the class_outputs here is the raw score.
    attributes: If not None, a dict of `tf.Tensor`. Each value is in shape `[N,
      num_classes, attribute_size]` or `[N, 1, attribute_size]` of attribute
      predictions on all feature levels. The N is the number of total anchors on
      all levels.
    pre_nms_top_k: An `int` number of top candidate detections per class before
      NMS.
    pre_nms_score_threshold: A `float` representing the threshold for deciding
      when to remove boxes based on score.
    nms_iou_threshold: A `float` representing the threshold for deciding whether
      boxes overlap too much with respect to IOU.
    max_num_detections: A `scalar` representing maximum number of boxes retained
      over all classes.
    soft_nms_sigma: A `float` representing the sigma parameter for Soft NMS.
      When soft_nms_sigma=0.0, we fall back to standard NMS. If set to None,
      `tf.image.non_max_suppression_padded` is called instead.

  Returns:
    nms_boxes: A `float` tf.Tensor of shape `[max_num_detections, 4]`
      representing top detected boxes in `[y1, x1, y2, x2]`.
    nms_scores: A `float` tf.Tensor of shape `[max_num_detections]` representing
      sorted confidence scores for detected boxes. The values are between [0,
      1].
    nms_classes: An `int` tf.Tensor of shape `[max_num_detections]` representing
      classes for detected boxes.
    valid_detections: An `int` tf.Tensor of shape [1] only the top
      `valid_detections` boxes are valid detections.
    nms_attributes: None or a dict. Each value is a `float` tf.Tensor of shape
      `[max_num_detections, attribute_size]` representing attribute predictions
      for detected boxes. Can be an empty dict if `attributes` is None.
  """
  nmsed_boxes = []
  nmsed_scores = []
  nmsed_classes = []
  num_classes_for_box = boxes.get_shape().as_list()[1]
  num_classes = scores.get_shape().as_list()[1]
  if attributes:
    nmsed_attributes = {att_name: [] for att_name in attributes.keys()}
  else:
    nmsed_attributes = {}

  for i in range(num_classes):
    boxes_i = boxes[:, min(num_classes_for_box - 1, i)]
    scores_i = scores[:, i]
    # Obtains pre_nms_top_k before running NMS.
    scores_i, indices = tf.nn.top_k(
        scores_i, k=tf.minimum(tf.shape(scores_i)[-1], pre_nms_top_k)
    )
    boxes_i = tf.gather(boxes_i, indices)

    if soft_nms_sigma is not None:
      (nmsed_indices_i, nmsed_scores_i) = (
          tf.image.non_max_suppression_with_scores(
              tf.cast(boxes_i, tf.float32),
              tf.cast(scores_i, tf.float32),
              max_num_detections,
              iou_threshold=nms_iou_threshold,
              score_threshold=pre_nms_score_threshold,
              soft_nms_sigma=soft_nms_sigma,
              name='nms_detections_' + str(i),
          )
      )
      nmsed_boxes_i = tf.gather(boxes_i, nmsed_indices_i)
      nmsed_boxes_i = preprocess_ops.clip_or_pad_to_fixed_size(
          nmsed_boxes_i, max_num_detections, 0.0
      )
      nmsed_scores_i = preprocess_ops.clip_or_pad_to_fixed_size(
          nmsed_scores_i, max_num_detections, -1.0
      )
    else:
      (nmsed_indices_i, nmsed_num_valid_i) = (
          tf.image.non_max_suppression_padded(
              tf.cast(boxes_i, tf.float32),
              tf.cast(scores_i, tf.float32),
              max_num_detections,
              iou_threshold=nms_iou_threshold,
              score_threshold=pre_nms_score_threshold,
              pad_to_max_output_size=True,
              name='nms_detections_' + str(i),
          )
      )
      nmsed_boxes_i = tf.gather(boxes_i, nmsed_indices_i)
      nmsed_scores_i = tf.gather(scores_i, nmsed_indices_i)
      # Sets scores of invalid boxes to -1.
      nmsed_scores_i = tf.where(
          tf.less(tf.range(max_num_detections), [nmsed_num_valid_i]),
          nmsed_scores_i,
          -tf.ones_like(nmsed_scores_i),
      )

    nmsed_classes_i = tf.fill([max_num_detections], i)
    nmsed_boxes.append(nmsed_boxes_i)
    nmsed_scores.append(nmsed_scores_i)
    nmsed_classes.append(nmsed_classes_i)
    if attributes:
      for att_name, att in attributes.items():
        num_classes_for_attr = att.get_shape().as_list()[1]
        att_i = att[:, min(num_classes_for_attr - 1, i)]
        att_i = tf.gather(att_i, indices)
        nmsed_att_i = tf.gather(att_i, nmsed_indices_i)
        nmsed_att_i = preprocess_ops.clip_or_pad_to_fixed_size(
            nmsed_att_i, max_num_detections, 0.0
        )
        nmsed_attributes[att_name].append(nmsed_att_i)

  # Concats results from all classes and sort them.
  nmsed_boxes = tf.concat(nmsed_boxes, axis=0)
  nmsed_scores = tf.concat(nmsed_scores, axis=0)
  nmsed_classes = tf.concat(nmsed_classes, axis=0)
  nmsed_scores, indices = tf.nn.top_k(
      nmsed_scores, k=max_num_detections, sorted=True
  )
  nmsed_boxes = tf.gather(nmsed_boxes, indices)
  nmsed_classes = tf.gather(nmsed_classes, indices)
  valid_detections = tf.reduce_sum(
      tf.cast(tf.greater(nmsed_scores, -1), tf.int32)
  )
  if attributes:
    for att_name in attributes.keys():
      nmsed_attributes[att_name] = tf.concat(nmsed_attributes[att_name], axis=0)
      nmsed_attributes[att_name] = tf.gather(
          nmsed_attributes[att_name], indices
      )

  return (
      nmsed_boxes,
      nmsed_scores,
      nmsed_classes,
      valid_detections,
      nmsed_attributes,
  )


def _select_top_k_scores(scores_in: tf.Tensor, pre_nms_num_detections: int):
  """Selects top_k scores and indices for each class.

  Args:
    scores_in: A `tf.Tensor` with shape `[batch_size, N, num_classes]`, which
      stacks class logit outputs on all feature levels. The N is the number of
      total anchors on all levels. The num_classes is the number of classes
      predicted by the model.
    pre_nms_num_detections: Number of candidates before NMS.

  Returns:
    scores and indices: A `tf.Tensor` with shape
      `[batch_size, pre_nms_num_detections, num_classes]`.
  """
  batch_size, num_anchors, num_class = scores_in.get_shape().as_list()
  if batch_size is None:
    batch_size = tf.shape(scores_in)[0]
  scores_trans = tf.transpose(scores_in, perm=[0, 2, 1])
  scores_trans = tf.reshape(scores_trans, [-1, num_anchors])

  top_k_scores, top_k_indices = tf.nn.top_k(
      scores_trans, k=pre_nms_num_detections, sorted=True
  )

  top_k_scores = tf.reshape(
      top_k_scores, [batch_size, num_class, pre_nms_num_detections]
  )
  top_k_indices = tf.reshape(
      top_k_indices, [batch_size, num_class, pre_nms_num_detections]
  )

  return tf.transpose(top_k_scores, [0, 2, 1]), tf.transpose(
      top_k_indices, [0, 2, 1]
  )


def _generate_detections_v2_class_agnostic(
    boxes: tf.Tensor,
    scores: tf.Tensor,
    pre_nms_top_k: int = 5000,
    pre_nms_score_threshold: float = 0.05,
    nms_iou_threshold: float = 0.5,
    max_num_detections: int = 100
):
  """Generates the final detections by applying class-agnostic NMS.

  Args:
    boxes: A `tf.Tensor` with shape `[batch_size, N, num_classes, 4]` or
      `[batch_size, N, 1, 4]`, which box predictions on all feature levels. The
      N is the number of total anchors on all levels.
    scores: A `tf.Tensor` with shape `[batch_size, N, num_classes]`, which
      stacks class probability on all feature levels. The N is the number of
      total anchors on all levels. The num_classes is the number of classes
      predicted by the model. Note that the class_outputs here is the raw score.
    pre_nms_top_k: An `int` number of top candidate detections per class before
      NMS.
    pre_nms_score_threshold: A `float` representing the threshold for deciding
      when to remove boxes based on score.
    nms_iou_threshold: A `float` representing the threshold for deciding whether
      boxes overlap too much with respect to IOU.
    max_num_detections: A `scalar` representing maximum number of boxes retained
      over all classes.

  Returns:
    nms_boxes: A `float` tf.Tensor of shape [batch_size, max_num_detections, 4]
      representing top detected boxes in [y1, x1, y2, x2].
    nms_scores: A `float` tf.Tensor of shape [batch_size, max_num_detections]
      representing sorted confidence scores for detected boxes. The values are
      between [0, 1].
    nms_classes: An `int` tf.Tensor of shape [batch_size, max_num_detections]
      representing classes for detected boxes.
    valid_detections: An `int` tf.Tensor of shape [batch_size] only the top
      `valid_detections` boxes are valid detections.
  """
  with tf.name_scope('generate_detections_class_agnostic'):
    nmsed_boxes = []
    nmsed_classes = []
    nmsed_scores = []
    valid_detections = []
    batch_size, _, num_classes_for_box, _ = boxes.get_shape().as_list()
    if batch_size is None:
      batch_size = tf.shape(boxes)[0]
    _, total_anchors, _ = scores.get_shape().as_list()

    # Keeps only the class with highest score for each predicted box.
    scores_condensed, classes_ids = tf.nn.top_k(
        scores, k=1, sorted=True
    )
    scores_condensed = tf.squeeze(scores_condensed, axis=[2])
    if num_classes_for_box > 1:
      boxes = tf.gather(boxes, classes_ids, axis=2, batch_dims=2)
    boxes_condensed = tf.squeeze(boxes, axis=[2])
    classes_condensed = tf.squeeze(classes_ids, axis=[2])

    # Selects top pre_nms_num scores and indices before NMS.
    num_anchors_filtered = min(total_anchors, pre_nms_top_k)
    scores_filtered, indices_filtered = tf.nn.top_k(
        scores_condensed, k=num_anchors_filtered, sorted=True
    )
    classes_filtered = tf.gather(
        classes_condensed, indices_filtered, axis=1, batch_dims=1
    )
    boxes_filtered = tf.gather(
        boxes_condensed, indices_filtered, axis=1, batch_dims=1
    )

    tf.ensure_shape(boxes_filtered, [None, num_anchors_filtered, 4])
    tf.ensure_shape(classes_filtered, [None, num_anchors_filtered])
    tf.ensure_shape(scores_filtered, [None, num_anchors_filtered])
    boxes_filtered = tf.cast(
        boxes_filtered, tf.float32
    )
    scores_filtered = tf.cast(
        scores_filtered, tf.float32
    )
    # Apply class-agnostic NMS on boxes.
    (nmsed_indices_padded, valid_detections) = (
        tf.image.non_max_suppression_padded(
            boxes=boxes_filtered,
            scores=scores_filtered,
            max_output_size=max_num_detections,
            iou_threshold=nms_iou_threshold,
            pad_to_max_output_size=True,
            score_threshold=pre_nms_score_threshold,
            sorted_input=True,
            name='nms_detections'
        )
    )
    nmsed_boxes = tf.gather(
        boxes_filtered, nmsed_indices_padded, batch_dims=1, axis=1
    )
    nmsed_scores = tf.gather(
        scores_filtered, nmsed_indices_padded, batch_dims=1, axis=1
    )
    nmsed_classes = tf.gather(
        classes_filtered, nmsed_indices_padded, batch_dims=1, axis=1
    )

    # Sets the padded boxes, scores, and classes to 0.
    padding_mask = tf.reshape(
        tf.range(max_num_detections), [1, -1]
    ) < tf.reshape(valid_detections, [-1, 1])
    nmsed_boxes = nmsed_boxes * tf.cast(
        tf.expand_dims(padding_mask, axis=2), nmsed_boxes.dtype
    )
    nmsed_scores = nmsed_scores * tf.cast(padding_mask, nmsed_scores.dtype)
    nmsed_classes = nmsed_classes * tf.cast(padding_mask, nmsed_classes.dtype)

  return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections


def _generate_detections_v2_class_aware(
    boxes: tf.Tensor,
    scores: tf.Tensor,
    pre_nms_top_k: int = 5000,
    pre_nms_score_threshold: float = 0.05,
    nms_iou_threshold: float = 0.5,
    max_num_detections: int = 100,
):
  """Generates the final detections by using class-aware NMS.

  Args:
    boxes: A `tf.Tensor` with shape `[batch_size, N, num_classes, 4]` or
      `[batch_size, N, 1, 4]`, which box predictions on all feature levels. The
      N is the number of total anchors on all levels.
    scores: A `tf.Tensor` with shape `[batch_size, N, num_classes]`, which
      stacks class probability on all feature levels. The N is the number of
      total anchors on all levels. The num_classes is the number of classes
      predicted by the model. Note that the class_outputs here is the raw score.
    pre_nms_top_k: An `int` number of top candidate detections per class before
      NMS.
    pre_nms_score_threshold: A `float` representing the threshold for deciding
      when to remove boxes based on score.
    nms_iou_threshold: A `float` representing the threshold for deciding whether
      boxes overlap too much with respect to IOU.
    max_num_detections: A `scalar` representing maximum number of boxes retained
      over all classes.

  Returns:
    nms_boxes: A `float` tf.Tensor of shape [batch_size, max_num_detections, 4]
      representing top detected boxes in [y1, x1, y2, x2].
    nms_scores: A `float` tf.Tensor of shape [batch_size, max_num_detections]
      representing sorted confidence scores for detected boxes. The values are
      between [0, 1].
    nms_classes: An `int` tf.Tensor of shape [batch_size, max_num_detections]
      representing classes for detected boxes.
    valid_detections: An `int` tf.Tensor of shape [batch_size] only the top
      `valid_detections` boxes are valid detections.
  """
  with tf.name_scope('generate_detections'):
    nmsed_boxes = []
    nmsed_classes = []
    nmsed_scores = []
    valid_detections = []
    batch_size, _, num_classes_for_box, _ = boxes.get_shape().as_list()
    if batch_size is None:
      batch_size = tf.shape(boxes)[0]
    _, total_anchors, num_classes = scores.get_shape().as_list()
    # Selects top pre_nms_num scores and indices before NMS.
    scores, indices = _select_top_k_scores(
        scores, min(total_anchors, pre_nms_top_k)
    )
    for i in range(num_classes):
      boxes_i = boxes[:, :, min(num_classes_for_box - 1, i), :]
      scores_i = scores[:, :, i]
      # Obtains pre_nms_top_k before running NMS.
      boxes_i = tf.gather(boxes_i, indices[:, :, i], batch_dims=1, axis=1)

      # Filter out scores.
      boxes_i, scores_i = box_ops.filter_boxes_by_scores(
          boxes_i, scores_i, min_score_threshold=pre_nms_score_threshold
      )

      (nmsed_scores_i, nmsed_boxes_i) = nms.sorted_non_max_suppression_padded(
          tf.cast(scores_i, tf.float32),
          tf.cast(boxes_i, tf.float32),
          max_num_detections,
          iou_threshold=nms_iou_threshold,
      )
      nmsed_classes_i = tf.fill([batch_size, max_num_detections], i)
      nmsed_boxes.append(nmsed_boxes_i)
      nmsed_scores.append(nmsed_scores_i)
      nmsed_classes.append(nmsed_classes_i)
  nmsed_boxes = tf.concat(nmsed_boxes, axis=1)
  nmsed_scores = tf.concat(nmsed_scores, axis=1)
  nmsed_classes = tf.concat(nmsed_classes, axis=1)
  nmsed_scores, indices = tf.nn.top_k(
      nmsed_scores, k=max_num_detections, sorted=True
  )
  nmsed_boxes = tf.gather(nmsed_boxes, indices, batch_dims=1, axis=1)
  nmsed_classes = tf.gather(nmsed_classes, indices, batch_dims=1)
  valid_detections = tf.reduce_sum(
      input_tensor=tf.cast(tf.greater(nmsed_scores, 0.0), tf.int32), axis=1
  )
  return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections


def _generate_detections_v2(
    boxes: tf.Tensor,
    scores: tf.Tensor,
    pre_nms_top_k: int = 5000,
    pre_nms_score_threshold: float = 0.05,
    nms_iou_threshold: float = 0.5,
    max_num_detections: int = 100,
    use_class_agnostic_nms: Optional[bool] = None,
):
  """Generates the final detections given the model outputs.

  This implementation unrolls classes dimension while using the tf.while_loop
  to implement the batched NMS, so that it can be parallelized at the batch
  dimension. It should give better performance comparing to v1 implementation.
  It is TPU compatible.

  Args:
    boxes: A `tf.Tensor` with shape `[batch_size, N, num_classes, 4]` or
      `[batch_size, N, 1, 4]`, which box predictions on all feature levels. The
      N is the number of total anchors on all levels.
    scores: A `tf.Tensor` with shape `[batch_size, N, num_classes]`, which
      stacks class probability on all feature levels. The N is the number of
      total anchors on all levels. The num_classes is the number of classes
      predicted by the model. Note that the class_outputs here is the raw score.
    pre_nms_top_k: An `int` number of top candidate detections per class before
      NMS.
    pre_nms_score_threshold: A `float` representing the threshold for deciding
      when to remove boxes based on score.
    nms_iou_threshold: A `float` representing the threshold for deciding whether
      boxes overlap too much with respect to IOU.
    max_num_detections: A `scalar` representing maximum number of boxes retained
      over all classes.
    use_class_agnostic_nms: A `bool` of whether non max suppression is operated
      on all the boxes using max scores across all classes.

  Returns:
    nms_boxes: A `float` tf.Tensor of shape [batch_size, max_num_detections, 4]
      representing top detected boxes in [y1, x1, y2, x2].
    nms_scores: A `float` tf.Tensor of shape [batch_size, max_num_detections]
      representing sorted confidence scores for detected boxes. The values are
      between [0, 1].
    nms_classes: An `int` tf.Tensor of shape [batch_size, max_num_detections]
      representing classes for detected boxes.
    valid_detections: An `int` tf.Tensor of shape [batch_size] only the top
      `valid_detections` boxes are valid detections.
  """
  if use_class_agnostic_nms:
    return _generate_detections_v2_class_agnostic(
        boxes=boxes,
        scores=scores,
        pre_nms_top_k=pre_nms_top_k,
        pre_nms_score_threshold=pre_nms_score_threshold,
        nms_iou_threshold=nms_iou_threshold,
        max_num_detections=max_num_detections,
    )

  return _generate_detections_v2_class_aware(
      boxes=boxes,
      scores=scores,
      pre_nms_top_k=pre_nms_top_k,
      pre_nms_score_threshold=pre_nms_score_threshold,
      nms_iou_threshold=nms_iou_threshold,
      max_num_detections=max_num_detections,
  )


def _generate_detections_v3(
    boxes: tf.Tensor,
    scores: tf.Tensor,
    pre_nms_score_threshold: float = 0.05,
    nms_iou_threshold: float = 0.5,
    max_num_detections: int = 100,
    refinements: int = 2,
) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor]:
  """Generates the detections given the model outputs using NMS for EdgeTPU.

  Args:
    boxes: A `tf.Tensor` with shape `[batch_size, num_classes, N, 4]` or
      `[batch_size, 1, N, 4]`, which box predictions on all feature levels. The
      N is the number of total anchors on all levels.
    scores: A `tf.Tensor` with shape `[batch_size, num_classes, N]`, which
      stacks class probability on all feature levels. The N is the number of
      total anchors on all levels. The num_classes is the number of classes
      predicted by the model. Note that the class_outputs here is the raw score.
    pre_nms_score_threshold: A `float` representing the threshold for deciding
      when to remove boxes based on score.
    nms_iou_threshold: A `float` representing the threshold for deciding whether
      boxes overlap too much with respect to IOU.
    max_num_detections: A `scalar` representing maximum number of boxes retained
      over all classes.
    refinements: Quality parameter for NMS algorithm.

  Returns:
    nms_boxes: A `float` tf.Tensor of shape [batch_size, max_num_detections, 4]
      representing top detected boxes in [y1, x1, y2, x2].
    nms_scores: A `float` tf.Tensor of shape [batch_size, max_num_detections]
      representing sorted confidence scores for detected boxes. The values are
      between [0, 1].
    nms_classes: An `int` tf.Tensor of shape [batch_size, max_num_detections]
      representing classes for detected boxes.
    valid_detections: An `int` tf.Tensor of shape [batch_size] only the top
      `valid_detections` boxes are valid detections.

  Raises:
    ValueError if inputs shapes are not valid.
  """
  one = tf.constant(1, dtype=scores.dtype)
  with tf.name_scope('generate_detections'):
    batch_size, num_box_classes, box_locations, sides = (
        boxes.get_shape().as_list()
    )
    if batch_size is None:
      batch_size = tf.shape(boxes)[0]
    _, num_classes, locations = scores.get_shape().as_list()
    if num_box_classes != 1 and num_box_classes != num_classes:
      raise ValueError('Boxes should have either 1 class or same as scores.')
    if locations != box_locations:
      raise ValueError('Number of locations is different.')
    if sides != 4:
      raise ValueError('Number of sides is incorrect.')
    # Selects pre_nms_score_threshold scores before NMS.
    boxes, scores = box_ops.filter_boxes_by_scores(
        boxes, scores, min_score_threshold=pre_nms_score_threshold
    )

    # EdgeTPU-friendly class-wise NMS, -1 for invalid.
    indices = edgetpu.non_max_suppression_padded(
        boxes,
        scores,
        max_num_detections,
        iou_threshold=nms_iou_threshold,
        refinements=refinements,
    )
    # Gather NMS-ed boxes and scores.
    safe_indices = tf.nn.relu(indices)  # 0 for invalid
    invalid_detections = safe_indices - indices  # 1 for invalid, 0 for valid
    valid_detections = one - invalid_detections  # 0 for invalid, 1 for valid
    safe_indices = tf.cast(safe_indices, tf.int32)
    boxes = tf.gather(boxes, safe_indices, axis=2, batch_dims=2)
    boxes = tf.cast(tf.expand_dims(valid_detections, -1), boxes.dtype) * boxes
    scores = valid_detections * tf.gather(
        scores, safe_indices, axis=2, batch_dims=2
    )
    # Compliment with class numbers.
    classes = tf.constant(np.arange(num_classes), dtype=scores.dtype)
    classes = tf.reshape(classes, [1, num_classes, 1])
    classes = tf.tile(classes, [batch_size, 1, max_num_detections])
    # Flatten classes, locations. Class = -1 for invalid detection
    scores = tf.reshape(scores, [batch_size, num_classes * max_num_detections])
    boxes = tf.reshape(boxes, [batch_size, num_classes * max_num_detections, 4])
    classes = tf.reshape(
        valid_detections * classes - invalid_detections,
        [batch_size, num_classes * max_num_detections],
    )
    # Filter top-k across boxes of all classes
    scores, indices = tf.nn.top_k(scores, k=max_num_detections, sorted=True)
    boxes = tf.gather(boxes, indices, batch_dims=1, axis=1)
    classes = tf.gather(classes, indices, batch_dims=1, axis=1)
    invalid_detections = tf.nn.relu(classes) - classes
    valid_detections = tf.reduce_sum(one - invalid_detections, axis=1)
    return boxes, scores, classes, valid_detections


def _generate_detections_batched(
    boxes: tf.Tensor,
    scores: tf.Tensor,
    pre_nms_score_threshold: float,
    nms_iou_threshold: float,
    max_num_detections: int,
):
  """Generates detected boxes with scores and classes for one-stage detector.

  The function takes output of multi-level ConvNets and anchor boxes and
  generates detected boxes. Note that this used batched nms, which is not
  supported on TPU currently.

  Args:
    boxes: A `tf.Tensor` with shape `[batch_size, N, num_classes, 4]` or
      `[batch_size, N, 1, 4]`, which box predictions on all feature levels. The
      N is the number of total anchors on all levels.
    scores: A `tf.Tensor` with shape `[batch_size, N, num_classes]`, which
      stacks class probability on all feature levels. The N is the number of
      total anchors on all levels. The num_classes is the number of classes
      predicted by the model. Note that the class_outputs here is the raw score.
    pre_nms_score_threshold: A `float` representing the threshold for deciding
      when to remove boxes based on score.
    nms_iou_threshold: A `float` representing the threshold for deciding whether
      boxes overlap too much with respect to IOU.
    max_num_detections: A `scalar` representing maximum number of boxes retained
      over all classes.

  Returns:
    nms_boxes: A `float` tf.Tensor of shape [batch_size, max_num_detections, 4]
      representing top detected boxes in [y1, x1, y2, x2].
    nms_scores: A `float` tf.Tensor of shape [batch_size, max_num_detections]
      representing sorted confidence scores for detected boxes. The values are
      between [0, 1].
    nms_classes: An `int` tf.Tensor of shape [batch_size, max_num_detections]
      representing classes for detected boxes.
    valid_detections: An `int` tf.Tensor of shape [batch_size] only the top
      `valid_detections` boxes are valid detections.
  """
  with tf.name_scope('generate_detections'):
    nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections = (
        tf.image.combined_non_max_suppression(
            boxes,
            scores,
            max_output_size_per_class=max_num_detections,
            max_total_size=max_num_detections,
            iou_threshold=nms_iou_threshold,
            score_threshold=pre_nms_score_threshold,
            pad_per_class=False,
            clip_boxes=False,
        )
    )
    nmsed_classes = tf.cast(nmsed_classes, tf.int32)
  return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections


def _generate_detections_tflite_implements_signature(
    config: Dict[str, Any]
) -> str:
  """Returns `experimental_implements` signature for TFLite's custom NMS op.

  This signature encodes the arguments to correctly initialize TFLite's custom
  post-processing op in the MLIR converter.
  For details on `experimental_implements` see here:
  https://www.tensorflow.org/api_docs/python/tf/function

  Args:
    config: A dictionary of configs defining parameters for TFLite NMS op.

  Returns:
    An `experimental_implements` signature string.
  """

  implements_signature = [
      'name: "%s"' % 'TFLite_Detection_PostProcess',
      'attr { key: "max_detections" value { i: %d } }'
      % config['max_detections'],
      'attr { key: "max_classes_per_detection" value { i: %d } }'
      % config['max_classes_per_detection'],
      'attr { key: "detections_per_class" value { i: %d } }'
      % config.get('detections_per_class', 5),
      'attr { key: "use_regular_nms" value { b: %s } }'
      % str(config['use_regular_nms']).lower(),
      'attr { key: "nms_score_threshold" value { f: %f } }'
      % config['nms_score_threshold'],
      'attr { key: "nms_iou_threshold" value { f: %f } }'
      % config['nms_iou_threshold'],
      'attr { key: "y_scale" value { f: %f } }' % config.get('y_scale', 1.0),
      'attr { key: "x_scale" value { f: %f } }' % config.get('x_scale', 1.0),
      'attr { key: "h_scale" value { f: %f } }' % config.get('h_scale', 1.0),
      'attr { key: "w_scale" value { f: %f } }' % config.get('w_scale', 1.0),
      'attr { key: "num_classes" value { i: %d } }' % config['num_classes'],
  ]
  implements_signature = ' '.join(implements_signature)
  return implements_signature


def _generate_detections_tflite(
    raw_boxes: Mapping[str, tf.Tensor],
    raw_scores: Mapping[str, tf.Tensor],
    anchor_boxes: Mapping[str, tf.Tensor],
    config: Dict[str, Any],
) -> Sequence[Any]:
  """Generate detections for conversion to TFLite.

  Mathematically same as class-agnostic NMS, except that the last portion of
  the TF graph constitutes a dummy `tf.function` that contains an annotation
  for conversion to TFLite's custom NMS op. Using this custom op allows
  features like post-training quantization & accelerator support.
  NOTE: This function does NOT return a valid output, and is only meant to
  generate a SavedModel for TFLite conversion via MLIR. The generated SavedModel
  should not be used for inference.
  For TFLite op details, see tensorflow/lite/kernels/detection_postprocess.cc

  Args:
    raw_boxes: A dictionary of tensors for raw boxes. Key is level of features
      and value is a tensor denoting a level of boxes with shape [1, H, W, 4 *
      num_anchors].
    raw_scores: A dictionary of tensors for classes. Key is level of features
      and value is a tensor denoting a level of logits with shape [1, H, W,
      num_class * num_anchors].
    anchor_boxes: A dictionary of tensors for anchor boxes. Key is level of
      features and value is a tensor denoting a level of anchors with shape
      [num_anchors, 4].
    config: A dictionary of configs defining parameters for TFLite NMS op.

  Returns:
    A (dummy) tuple of (boxes, scores, classess, num_detections).

  Raises:
    ValueError: If the last dimension of predicted boxes is not divisible by 4,
      or the last dimension of predicted scores is not divisible by number of
      anchors per location.
  """
  scores, boxes, anchors = [], [], []
  levels = list(raw_scores.keys())
  min_level = int(min(levels))
  max_level = int(max(levels))
  batch_size = tf.shape(raw_scores[str(min_level)])[0]

  num_anchors_per_locations_times_4 = (
      raw_boxes[str(min_level)].get_shape().as_list()[-1]
  )
  if num_anchors_per_locations_times_4 % 4 != 0:
    raise ValueError(
        'The last dimension of predicted boxes should be divisible by 4.'
    )
  num_anchors_per_locations = num_anchors_per_locations_times_4 // 4
  if num_anchors_per_locations_times_4 % 4 != 0:
    raise ValueError(
        'The last dimension of predicted scores should be divisible by'
        f' {num_anchors_per_locations}.'
    )
  num_classes = (
      raw_scores[str(min_level)].get_shape().as_list()[-1]
      // num_anchors_per_locations
  )
  config.update({'num_classes': num_classes})

  for i in range(min_level, max_level + 1):
    scores.append(tf.reshape(raw_scores[str(i)], [batch_size, -1, num_classes]))
    boxes.append(tf.reshape(raw_boxes[str(i)], [batch_size, -1, 4]))
    anchors.append(tf.reshape(anchor_boxes[str(i)], [-1, 4]))
  scores = tf.sigmoid(tf.concat(scores, 1))
  boxes = tf.concat(boxes, 1)
  anchors = tf.concat(anchors, 0)

  ycenter_a = (anchors[..., 0] + anchors[..., 2]) / 2
  xcenter_a = (anchors[..., 1] + anchors[..., 3]) / 2
  ha = anchors[..., 2] - anchors[..., 0]
  wa = anchors[..., 3] - anchors[..., 1]
  anchors = tf.stack([ycenter_a, xcenter_a, ha, wa], axis=-1)

  if config.get('normalize_anchor_coordinates', False):
    # TFLite's object detection APIs require normalized anchors.
    height, width = config['input_image_size']
    normalize_factor = tf.constant(
        [height, width, height, width], dtype=tf.float32
    )
    anchors = anchors / normalize_factor

  # There is no TF equivalent for TFLite's custom post-processing op.
  # So we add an 'empty' composite function here, that is legalized to the
  # custom op with MLIR.
  # For details, see: tensorflow/compiler/mlir/lite/utils/nms_utils.cc
  @tf.function(
      experimental_implements=_generate_detections_tflite_implements_signature(
          config
      )
  )
  # pylint: disable=g-unused-argument,unused-argument
  def dummy_post_processing(input_boxes, input_scores, input_anchors):
    boxes = tf.constant(0.0, dtype=tf.float32, name='boxes')
    scores = tf.constant(0.0, dtype=tf.float32, name='scores')
    classes = tf.constant(0.0, dtype=tf.float32, name='classes')
    num_detections = tf.constant(0.0, dtype=tf.float32, name='num_detections')
    return boxes, classes, scores, num_detections

  if config.get('omit_nms', False):
    dummy_classes = tf.constant(0.0, dtype=tf.float32, name='classes')
    dummy_num_detections = tf.constant(
        0.0, dtype=tf.float32, name='num_detections')
    return boxes, dummy_classes, scores, dummy_num_detections
  return dummy_post_processing(boxes, scores, anchors)[::-1]


@tf_keras.utils.register_keras_serializable(package='Vision')
class DetectionGenerator(tf_keras.layers.Layer):
  """Generates the final detected boxes with scores and classes."""

  def __init__(
      self,
      apply_nms: bool = True,
      pre_nms_top_k: int = 5000,
      pre_nms_score_threshold: float = 0.05,
      nms_iou_threshold: float = 0.5,
      max_num_detections: int = 100,
      nms_version: str = 'v2',
      use_cpu_nms: bool = False,
      soft_nms_sigma: Optional[float] = None,
      use_sigmoid_probability: bool = False,
      **kwargs,
  ):
    """Initializes a detection generator.

    Args:
      apply_nms: A `bool` of whether or not apply non maximum suppression. If
        False, the decoded boxes and their scores are returned.
      pre_nms_top_k: An `int` of the number of top scores proposals to be kept
        before applying NMS.
      pre_nms_score_threshold: A `float` of the score threshold to apply before
        applying  NMS. Proposals whose scores are below this threshold are
        thrown away.
      nms_iou_threshold: A `float` in [0, 1], the NMS IoU threshold.
      max_num_detections: An `int` of the final number of total detections to
        generate.
      nms_version: A string of `batched`, `v1` or `v2` specifies NMS version.
      use_cpu_nms: A `bool` of whether or not enforce NMS to run on CPU.
      soft_nms_sigma: A `float` representing the sigma parameter for Soft NMS.
        When soft_nms_sigma=0.0, we fall back to standard NMS.
      use_sigmoid_probability: A `bool`, if true, use sigmoid to get
        probability, otherwise use softmax.
      **kwargs: Additional keyword arguments passed to Layer.
    """
    self._config_dict = {
        'apply_nms': apply_nms,
        'pre_nms_top_k': pre_nms_top_k,
        'pre_nms_score_threshold': pre_nms_score_threshold,
        'nms_iou_threshold': nms_iou_threshold,
        'max_num_detections': max_num_detections,
        'nms_version': nms_version,
        'use_cpu_nms': use_cpu_nms,
        'soft_nms_sigma': soft_nms_sigma,
        'use_sigmoid_probability': use_sigmoid_probability,
    }
    super(DetectionGenerator, self).__init__(**kwargs)

  def __call__(
      self,
      raw_boxes: tf.Tensor,
      raw_scores: tf.Tensor,
      anchor_boxes: tf.Tensor,
      image_shape: tf.Tensor,
      regression_weights: Optional[List[float]] = None,
      bbox_per_class: bool = True,
  ):
    """Generates final detections.

    Args:
      raw_boxes: A `tf.Tensor` of shape of `[batch_size, K, num_classes * 4]`
        representing the class-specific box coordinates relative to anchors.
      raw_scores: A `tf.Tensor` of shape of `[batch_size, K, num_classes]`
        representing the class logits before applying score activiation.
      anchor_boxes: A `tf.Tensor` of shape of `[batch_size, K, 4]` representing
        the corresponding anchor boxes w.r.t `box_outputs`.
      image_shape: A `tf.Tensor` of shape of `[batch_size, 2]` storing the image
        height and width w.r.t. the scaled image, i.e. the same image space as
        `box_outputs` and `anchor_boxes`.
      regression_weights: A list of four float numbers to scale coordinates.
      bbox_per_class: A `bool`. If True, perform per-class box regression.

    Returns:
      If `apply_nms` = True, the return is a dictionary with keys:
        `detection_boxes`: A `float` tf.Tensor of shape
          [batch, max_num_detections, 4] representing top detected boxes in
          [y1, x1, y2, x2].
        `detection_scores`: A `float` `tf.Tensor` of shape
          [batch, max_num_detections] representing sorted confidence scores for
          detected boxes. The values are between [0, 1].
        `detection_classes`: An `int` tf.Tensor of shape
          [batch, max_num_detections] representing classes for detected boxes.
        `num_detections`: An `int` tf.Tensor of shape [batch] only the first
          `num_detections` boxes are valid detections
      If `apply_nms` = False, the return is a dictionary with keys:
        `decoded_boxes`: A `float` tf.Tensor of shape [batch, num_raw_boxes, 4]
          representing all the decoded boxes.
        `decoded_box_scores`: A `float` tf.Tensor of shape
          [batch, num_raw_boxes] representing socres of all the decoded boxes.
    """
    if self._config_dict['use_sigmoid_probability']:
      box_scores = tf.math.sigmoid(raw_scores)
    else:
      box_scores = tf.nn.softmax(raw_scores, axis=-1)

    # Removes the background class.
    box_scores_shape = tf.shape(box_scores)
    box_scores_shape_list = box_scores.get_shape().as_list()
    batch_size = box_scores_shape[0]
    num_locations = box_scores_shape_list[1]
    num_classes = box_scores_shape_list[-1]

    box_scores = tf.slice(box_scores, [0, 0, 1], [-1, -1, -1])

    if bbox_per_class:
      num_detections = num_locations * (num_classes - 1)
      raw_boxes = tf.reshape(
          raw_boxes, [batch_size, num_locations, num_classes, 4]
      )
      raw_boxes = tf.slice(raw_boxes, [0, 0, 1, 0], [-1, -1, -1, -1])
      anchor_boxes = tf.tile(
          tf.expand_dims(anchor_boxes, axis=2), [1, 1, num_classes - 1, 1]
      )
      raw_boxes = tf.reshape(raw_boxes, [batch_size, num_detections, 4])
      anchor_boxes = tf.reshape(anchor_boxes, [batch_size, num_detections, 4])

    # Box decoding.
    decoded_boxes = box_ops.decode_boxes(
        raw_boxes, anchor_boxes, weights=regression_weights
    )

    # Box clipping.
    if image_shape is not None:
      decoded_boxes = box_ops.clip_boxes(
          decoded_boxes, tf.expand_dims(image_shape, axis=1)
      )

    if bbox_per_class:
      decoded_boxes = tf.reshape(
          decoded_boxes, [batch_size, num_locations, num_classes - 1, 4]
      )
    else:
      decoded_boxes = tf.expand_dims(decoded_boxes, axis=2)

    if not self._config_dict['apply_nms']:
      return {
          'decoded_boxes': decoded_boxes,
          'decoded_box_scores': box_scores,
      }

    # Optionally force the NMS be run on CPU.
    if self._config_dict['use_cpu_nms']:
      nms_context = tf.device('cpu:0')
    else:
      nms_context = contextlib.nullcontext()

    with nms_context:
      if self._config_dict['nms_version'] == 'batched':
        (nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections) = (
            _generate_detections_batched(
                decoded_boxes,
                box_scores,
                self._config_dict['pre_nms_score_threshold'],
                self._config_dict['nms_iou_threshold'],
                self._config_dict['max_num_detections'],
            )
        )
      elif self._config_dict['nms_version'] == 'v1':
        (nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections, _) = (
            _generate_detections_v1(
                decoded_boxes,
                box_scores,
                pre_nms_top_k=self._config_dict['pre_nms_top_k'],
                pre_nms_score_threshold=self._config_dict[
                    'pre_nms_score_threshold'
                ],
                nms_iou_threshold=self._config_dict['nms_iou_threshold'],
                max_num_detections=self._config_dict['max_num_detections'],
                soft_nms_sigma=self._config_dict['soft_nms_sigma'],
            )
        )
      elif self._config_dict['nms_version'] == 'v2':
        (nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections) = (
            _generate_detections_v2(
                decoded_boxes,
                box_scores,
                pre_nms_top_k=self._config_dict['pre_nms_top_k'],
                pre_nms_score_threshold=self._config_dict[
                    'pre_nms_score_threshold'
                ],
                nms_iou_threshold=self._config_dict['nms_iou_threshold'],
                max_num_detections=self._config_dict['max_num_detections'],
            )
        )
      else:
        raise ValueError(
            'NMS version {} not supported.'.format(
                self._config_dict['nms_version']
            )
        )

    # Adds 1 to offset the background class which has index 0.
    nmsed_classes += 1

    return {
        'num_detections': valid_detections,
        'detection_boxes': nmsed_boxes,
        'detection_classes': nmsed_classes,
        'detection_scores': nmsed_scores,
    }

  def get_config(self):
    return self._config_dict

  @classmethod
  def from_config(cls, config):
    return cls(**config)


@tf_keras.utils.register_keras_serializable(package='Vision')
class MultilevelDetectionGenerator(tf_keras.layers.Layer):
  """Generates detected boxes with scores and classes for one-stage detector."""

  def __init__(
      self,
      apply_nms: bool = True,
      pre_nms_top_k: int = 5000,
      pre_nms_score_threshold: float = 0.05,
      nms_iou_threshold: float = 0.5,
      max_num_detections: int = 100,
      nms_version: str = 'v1',
      use_cpu_nms: bool = False,
      soft_nms_sigma: Optional[float] = None,
      tflite_post_processing_config: Optional[Dict[str, Any]] = None,
      pre_nms_top_k_sharding_block: Optional[int] = None,
      nms_v3_refinements: Optional[int] = None,
      return_decoded: Optional[bool] = None,
      use_class_agnostic_nms: Optional[bool] = None,
      box_coder_weights: Optional[List[float]] = None,
      **kwargs,
  ):
    """Initializes a multi-level detection generator.

    Args:
      apply_nms: A `bool` of whether or not apply non maximum suppression. If
        False, the decoded boxes and their scores are returned.
      pre_nms_top_k: An `int` of the number of top scores proposals to be kept
        before applying NMS.
      pre_nms_score_threshold: A `float` of the score threshold to apply before
        applying NMS. Proposals whose scores are below this threshold are thrown
        away.
      nms_iou_threshold: A `float` in [0, 1], the NMS IoU threshold.
      max_num_detections: An `int` of the final number of total detections to
        generate.
      nms_version: A string of `batched`, `v1` or `v2` specifies NMS version
      use_cpu_nms: A `bool` of whether or not enforce NMS to run on CPU.
      soft_nms_sigma: A `float` representing the sigma parameter for Soft NMS.
        When soft_nms_sigma=0.0, we fall back to standard NMS.
      tflite_post_processing_config: An optional dictionary containing
        post-processing parameters used for TFLite custom NMS op.
      pre_nms_top_k_sharding_block: For v3 (edge tpu friendly) NMS, avoids
        creating long axis for pre_nms_top_k. Will do top_k in shards of size
        [num_classes, pre_nms_top_k_sharding_block * boxes_per_location]
      nms_v3_refinements: For v3 (edge tpu friendly) NMS, sets how close result
        should be to standard NMS. When None, 2 is used. Here is some
        experimental deviations for different refinement values:
        if == 0, AP is reduced 1.0%, AR is reduced 5% on COCO
        if == 1, AP is reduced 0.2%, AR is reduced 2% on COCO
        if == 2, AP is reduced <0.1%, AR is reduced <1% on COCO
      return_decoded: A `bool` of whether to return decoded boxes before NMS
        regardless of whether `apply_nms` is True or not.
      use_class_agnostic_nms: A `bool` of whether non max suppression is
        operated on all the boxes using max scores across all classes.
      box_coder_weights: An optional `list` of 4 positive floats to scale y, x,
        h, and w when encoding box coordinates. If set to None, does not perform
        scaling. For Faster RCNN, the open-source implementation recommends
        using [10.0, 10.0, 5.0, 5.0].
      **kwargs: Additional keyword arguments passed to Layer.

    Raises:
      ValueError: If `use_class_agnostic_nms` is required by `nms_version` is
      not specified as `v2`.
    """
    if use_class_agnostic_nms and nms_version != 'v2':
      raise ValueError(
          'If not using TFLite custom NMS, `use_class_agnostic_nms` can only be'
          ' enabled for NMS v2 for now, but NMS {} is used! If you are using'
          ' TFLite NMS, please configure TFLite custom NMS for class-agnostic'
          ' NMS.'.format(nms_version)
      )
    self._config_dict = {
        'apply_nms': apply_nms,
        'pre_nms_top_k': pre_nms_top_k,
        'pre_nms_score_threshold': pre_nms_score_threshold,
        'nms_iou_threshold': nms_iou_threshold,
        'max_num_detections': max_num_detections,
        'nms_version': nms_version,
        'use_cpu_nms': use_cpu_nms,
        'soft_nms_sigma': soft_nms_sigma,
        'return_decoded': return_decoded,
        'use_class_agnostic_nms': use_class_agnostic_nms,
        'box_coder_weights': box_coder_weights,
    }
    # Don't store if were not defined
    if pre_nms_top_k_sharding_block is not None:
      self._config_dict['pre_nms_top_k_sharding_block'] = (
          pre_nms_top_k_sharding_block
      )
    if nms_v3_refinements is not None:
      self._config_dict['nms_v3_refinements'] = nms_v3_refinements

    if tflite_post_processing_config is not None:
      self._config_dict.update(
          {'tflite_post_processing_config': tflite_post_processing_config}
      )
    super().__init__(**kwargs)

  def _decode_multilevel_outputs(
      self,
      raw_boxes: Mapping[str, tf.Tensor],
      raw_scores: Mapping[str, tf.Tensor],
      anchor_boxes: Mapping[str, tf.Tensor],
      image_shape: tf.Tensor,
      raw_attributes: Optional[Mapping[str, tf.Tensor]] = None,
  ):
    """Collects dict of multilevel boxes, scores, attributes into lists."""
    boxes = []
    scores = []
    if raw_attributes:
      attributes = {att_name: [] for att_name in raw_attributes.keys()}
    else:
      attributes = {}

    levels = list(raw_boxes.keys())
    min_level = int(min(levels))
    max_level = int(max(levels))
    for i in range(min_level, max_level + 1):
      raw_boxes_i = raw_boxes[str(i)]
      raw_scores_i = raw_scores[str(i)]
      batch_size = tf.shape(raw_boxes_i)[0]
      (_, feature_h_i, feature_w_i, num_anchors_per_locations_times_4) = (
          raw_boxes_i.get_shape().as_list()
      )
      num_locations = feature_h_i * feature_w_i
      num_anchors_per_locations = num_anchors_per_locations_times_4 // 4
      num_classes = (
          raw_scores_i.get_shape().as_list()[-1] // num_anchors_per_locations
      )

      # Applies score transformation and remove the implicit background class.
      scores_i = tf.sigmoid(
          tf.reshape(
              raw_scores_i,
              [
                  batch_size,
                  num_locations * num_anchors_per_locations,
                  num_classes,
              ],
          )
      )
      scores_i = tf.slice(scores_i, [0, 0, 1], [-1, -1, -1])

      # Box decoding.
      # The anchor boxes are shared for all data in a batch.
      # One stage detector only supports class agnostic box regression.
      anchor_boxes_i = tf.reshape(
          anchor_boxes[str(i)],
          [batch_size, num_locations * num_anchors_per_locations, 4],
      )
      raw_boxes_i = tf.reshape(
          raw_boxes_i,
          [batch_size, num_locations * num_anchors_per_locations, 4],
      )
      boxes_i = box_ops.decode_boxes(
          raw_boxes_i,
          anchor_boxes_i,
          weights=self._config_dict['box_coder_weights'],
      )

      # Box clipping.
      if image_shape is not None:
        boxes_i = box_ops.clip_boxes(
            boxes_i, tf.expand_dims(image_shape, axis=1)
        )

      boxes.append(boxes_i)
      scores.append(scores_i)

      if raw_attributes:
        for att_name, raw_att in raw_attributes.items():
          attribute_size = (
              raw_att[str(i)].get_shape().as_list()[-1]
              // num_anchors_per_locations
          )
          att_i = tf.reshape(
              raw_att[str(i)],
              [
                  batch_size,
                  num_locations * num_anchors_per_locations,
                  attribute_size,
              ],
          )
          attributes[att_name].append(att_i)

    boxes = tf.concat(boxes, axis=1)
    boxes = tf.expand_dims(boxes, axis=2)
    scores = tf.concat(scores, axis=1)

    if raw_attributes:
      for att_name in raw_attributes.keys():
        attributes[att_name] = tf.concat(attributes[att_name], axis=1)
        attributes[att_name] = tf.expand_dims(attributes[att_name], axis=2)

    return boxes, scores, attributes

  def _decode_multilevel_outputs_and_pre_nms_top_k(
      self,
      raw_boxes: Mapping[str, tf.Tensor],
      raw_scores: Mapping[str, tf.Tensor],
      anchor_boxes: Mapping[str, tf.Tensor],
      image_shape: tf.Tensor,
  ) -> Tuple[tf.Tensor, tf.Tensor]:
    """Collects dict of multilevel boxes, scores into lists."""
    boxes = None
    scores = None

    pre_nms_top_k = self._config_dict['pre_nms_top_k']
    # TODO(b/258007436): consider removing when compiler be able to handle
    # it on its own.
    pre_nms_top_k_sharding_block = self._config_dict.get(
        'pre_nms_top_k_sharding_block', 128
    )
    levels = list(raw_boxes.keys())
    min_level = int(min(levels))
    max_level = int(max(levels))
    if image_shape is not None:
      clip_shape = tf.expand_dims(tf.expand_dims(image_shape, axis=1), axis=1)
    else:
      clip_shape = None
    for i in range(max_level, min_level - 1, -1):
      (
          batch_size,
          unsharded_h,
          unsharded_w,
          num_anchors_per_locations_times_4,
      ) = (
          raw_boxes[str(i)].get_shape().as_list()
      )
      num_anchors_per_locations = num_anchors_per_locations_times_4 // 4
      if batch_size is None:
        batch_size = tf.shape(raw_boxes[str(i)])[0]
      block = max(1, pre_nms_top_k_sharding_block // unsharded_w)
      boxes_shape = [
          batch_size,
          unsharded_h,
          unsharded_w * num_anchors_per_locations,
          4,
      ]
      decoded_boxes = box_ops.decode_boxes(
          tf.reshape(raw_boxes[str(i)], boxes_shape),
          tf.reshape(anchor_boxes[str(i)], boxes_shape),
      )
      if clip_shape is not None:
        decoded_boxes = box_ops.clip_boxes(
            decoded_boxes,
            clip_shape,
        )
      for raw_scores_i, decoded_boxes_i in edgetpu.shard_tensors(
          1, block, (raw_scores[str(i)], decoded_boxes)
      ):
        (_, feature_h_i, feature_w_i, _) = raw_scores_i.get_shape().as_list()
        num_locations = feature_h_i * feature_w_i
        num_classes = (
            raw_scores_i.get_shape().as_list()[-1] // num_anchors_per_locations
        )

        # Applies score transformation and remove the implicit background class.
        scores_i = tf.slice(
            tf.transpose(
                tf.reshape(
                    raw_scores_i,
                    [
                        batch_size,
                        num_locations * num_anchors_per_locations,
                        num_classes,
                    ],
                ),
                [0, 2, 1],
            ),
            [0, 1, 0],
            [-1, -1, -1],
        )

        # Box decoding.
        # The anchor boxes are shared for all data in a batch.
        # One stage detector only supports class agnostic box regression.
        boxes_i = tf.tile(
            tf.reshape(
                decoded_boxes_i,
                [batch_size, 1, num_locations * num_anchors_per_locations, 4],
            ),
            [1, num_classes - 1, 1, 1],
        )
        scores, boxes = edgetpu.concat_and_top_k(
            pre_nms_top_k, (scores, scores_i), (boxes, boxes_i)
        )
    boxes: tf.Tensor = boxes  # pytype: disable=annotation-type-mismatch
    return boxes, tf.sigmoid(scores)

  def __call__(
      self,
      raw_boxes: Mapping[str, tf.Tensor],
      raw_scores: Mapping[str, tf.Tensor],
      anchor_boxes: Mapping[str, tf.Tensor],
      image_shape: tf.Tensor,
      raw_attributes: Optional[Mapping[str, tf.Tensor]] = None,
  ) -> Mapping[str, Any]:
    """Generates final detections.

    Args:
      raw_boxes: A `dict` with keys representing FPN levels and values
        representing box tenors of shape `[batch, feature_h, feature_w,
        num_anchors * 4]`.
      raw_scores: A `dict` with keys representing FPN levels and values
        representing logit tensors of shape `[batch, feature_h, feature_w,
        num_anchors * num_classes]`.
      anchor_boxes: A `dict` with keys representing FPN levels and values
        representing anchor tenors of shape `[batch_size, K, 4]` representing
        the corresponding anchor boxes w.r.t `box_outputs`.
      image_shape: A `tf.Tensor` of shape of [batch_size, 2] storing the image
        height and width w.r.t. the scaled image, i.e. the same image space as
        `box_outputs` and `anchor_boxes`.
      raw_attributes: If not None, a `dict` of (attribute_name,
        attribute_prediction) pairs. `attribute_prediction` is a dict that
        contains keys representing FPN levels and values representing tenors of
        shape `[batch, feature_h, feature_w, num_anchors * attribute_size]`.

    Returns:
      If `apply_nms` = True, the return is a dictionary with keys:
        `detection_boxes`: A `float` tf.Tensor of shape
          [batch, max_num_detections, 4] representing top detected boxes in
          [y1, x1, y2, x2].
        `detection_scores`: A `float` tf.Tensor of shape
          [batch, max_num_detections] representing sorted confidence scores for
          detected boxes. The values are between [0, 1].
        `detection_classes`: An `int` tf.Tensor of shape
          [batch, max_num_detections] representing classes for detected boxes.
        `num_detections`: An `int` tf.Tensor of shape [batch] only the first
          `num_detections` boxes are valid detections
        `detection_attributes`: A dict. Values of the dict is a `float`
          tf.Tensor of shape [batch, max_num_detections, attribute_size]
          representing attribute predictions for detected boxes.
      If `apply_nms` = False, the return is a dictionary with following keys. If
      `return_decoded` = True, the following items will also be included even if
      `apply_nms` = True:
        `decoded_boxes`: A `float` tf.Tensor of shape [batch, num_raw_boxes, 4]
          representing all the decoded boxes.
        `decoded_box_scores`: A `float` tf.Tensor of shape
          [batch, num_raw_boxes] representing socres of all the decoded boxes.
        `decoded_box_attributes`: A dict. Values in the dict is a
          `float` tf.Tensor of shape [batch, num_raw_boxes, attribute_size]
          representing attribute predictions of all the decoded boxes.
    """
    if (
        self._config_dict['apply_nms']
        and self._config_dict['nms_version'] == 'tflite'
    ):
      boxes, classes, scores, num_detections = _generate_detections_tflite(
          raw_boxes,
          raw_scores,
          anchor_boxes,
          self.get_config()['tflite_post_processing_config'],
      )
      return {
          'num_detections': num_detections,
          'detection_boxes': boxes,
          'detection_classes': classes,
          'detection_scores': scores,
      }

    if self._config_dict['nms_version'] != 'v3':
      boxes, scores, attributes = self._decode_multilevel_outputs(
          raw_boxes, raw_scores, anchor_boxes, image_shape, raw_attributes
      )
    else:
      attributes = None
      boxes, scores = self._decode_multilevel_outputs_and_pre_nms_top_k(
          raw_boxes, raw_scores, anchor_boxes, image_shape
      )

    decoded_results = {
        'decoded_boxes': boxes,
        'decoded_box_scores': scores,
        'decoded_box_attributes': attributes,
    }

    if not self._config_dict['apply_nms']:
      return decoded_results

    # Optionally force the NMS to run on CPU.
    if self._config_dict['use_cpu_nms']:
      nms_context = tf.device('cpu:0')
    else:
      nms_context = contextlib.nullcontext()

    with nms_context:
      if raw_attributes and (self._config_dict['nms_version'] != 'v1'):
        raise ValueError(
            'Attribute learning is only supported for NMSv1 but NMS {} is used.'
            .format(self._config_dict['nms_version'])
        )
      if self._config_dict['nms_version'] == 'batched':
        (nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections) = (
            _generate_detections_batched(
                boxes,
                scores,
                self._config_dict['pre_nms_score_threshold'],
                self._config_dict['nms_iou_threshold'],
                self._config_dict['max_num_detections'],
            )
        )
        # Set `nmsed_attributes` to None for batched NMS.
        nmsed_attributes = {}
      elif self._config_dict['nms_version'] == 'v1':
        (
            nmsed_boxes,
            nmsed_scores,
            nmsed_classes,
            valid_detections,
            nmsed_attributes,
        ) = _generate_detections_v1(
            boxes,
            scores,
            attributes=attributes if raw_attributes else None,
            pre_nms_top_k=self._config_dict['pre_nms_top_k'],
            pre_nms_score_threshold=self._config_dict[
                'pre_nms_score_threshold'
            ],
            nms_iou_threshold=self._config_dict['nms_iou_threshold'],
            max_num_detections=self._config_dict['max_num_detections'],
            soft_nms_sigma=self._config_dict['soft_nms_sigma'],
        )
      elif self._config_dict['nms_version'] == 'v2':
        (nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections) = (
            _generate_detections_v2(
                boxes,
                scores,
                pre_nms_top_k=self._config_dict['pre_nms_top_k'],
                pre_nms_score_threshold=self._config_dict[
                    'pre_nms_score_threshold'
                ],
                nms_iou_threshold=self._config_dict['nms_iou_threshold'],
                max_num_detections=self._config_dict['max_num_detections'],
                use_class_agnostic_nms=self._config_dict[
                    'use_class_agnostic_nms'
                ],
            )
        )
        # Set `nmsed_attributes` to None for v2.
        nmsed_attributes = {}
      elif self._config_dict['nms_version'] == 'v3':
        (nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections) = (
            _generate_detections_v3(
                boxes,
                scores,
                pre_nms_score_threshold=self._config_dict[
                    'pre_nms_score_threshold'
                ],
                nms_iou_threshold=self._config_dict['nms_iou_threshold'],
                max_num_detections=self._config_dict['max_num_detections'],
                refinements=self._config_dict.get('nms_v3_refinements', 2),
            )
        )
        # Set `nmsed_attributes` to None for v3.
        nmsed_attributes = {}
      else:
        raise ValueError(
            'NMS version {} not supported.'.format(
                self._config_dict['nms_version']
            )
        )

    # Adds 1 to offset the background class which has index 0.
    nmsed_classes += 1

    return {
        **(decoded_results if self._config_dict['return_decoded'] else {}),
        'num_detections': valid_detections,
        'detection_boxes': nmsed_boxes,
        'detection_classes': nmsed_classes,
        'detection_scores': nmsed_scores,
        'detection_attributes': nmsed_attributes,
    }

  def get_config(self):
    return self._config_dict

  @classmethod
  def from_config(cls, config):
    return cls(**config)