Spaces:
Runtime error
Runtime error
File size: 1,551 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multi-head BERT encoder network with classification heads.
Includes configurations and instantiation methods.
"""
from typing import List, Optional, Text
import dataclasses
from official.modeling.hyperparams import base_config
from official.nlp.configs import encoders
@dataclasses.dataclass
class ClsHeadConfig(base_config.Config):
inner_dim: int = 0
num_classes: int = 2
activation: Optional[Text] = "tanh"
dropout_rate: float = 0.0
cls_token_idx: int = 0
name: Optional[Text] = None
@dataclasses.dataclass
class PretrainerConfig(base_config.Config):
"""Pretrainer configuration."""
encoder: encoders.EncoderConfig = dataclasses.field(
default_factory=encoders.EncoderConfig
)
cls_heads: List[ClsHeadConfig] = dataclasses.field(default_factory=list)
mlm_activation: str = "gelu"
mlm_initializer_range: float = 0.02
# Currently only used for mobile bert.
mlm_output_weights_use_proj: bool = False
|