Spaces:
Runtime error
Runtime error
File size: 30,105 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities used for data preparation."""
import collections
import json
import os
from absl import logging
import numpy as np
import tensorflow as tf, tf_keras
special_symbols = {
"<unk>": 0,
"<s>": 1,
"</s>": 2,
"<cls>": 3,
"<sep>": 4,
"<pad>": 5,
"<mask>": 6,
"<eod>": 7,
"<eop>": 8,
}
VOCAB_SIZE = 32000
UNK_ID = special_symbols["<unk>"]
CLS_ID = special_symbols["<cls>"]
SEP_ID = special_symbols["<sep>"]
MASK_ID = special_symbols["<mask>"]
EOD_ID = special_symbols["<eod>"]
SEG_ID_P = 0
SEG_ID_Q = 1
SEG_ID_CLS = 2
SEG_ID_PAD = 3
OnlineMaskingConfig = collections.namedtuple("OnlineMaskingConfig", [
"sample_strategy", "max_num_tokens", "min_num_tokens", "max_num_words",
"min_num_words"
])
def file_based_input_fn_builder(input_file, name_to_features, batch_size,
is_training):
"""Creates an `input_fn` closure."""
logging.info("Input tfrecord file %s", input_file)
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.io.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = t
return example
def input_fn():
"""Returns dataset for training/evaluation."""
num_threads = 8
if isinstance(input_file, str):
d = tf.data.TFRecordDataset(input_file)
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
if is_training:
d = d.shuffle(2048)
d = d.repeat()
else:
cycle_length = min(num_threads, len(input_file))
d = tf.data.Dataset.from_tensor_slices(input_file)
# file level shuffle
d = d.shuffle(len(input_file)).repeat()
d = d.interleave(
tf.data.TFRecordDataset,
cycle_length=cycle_length)
if is_training:
# sample level shuffle
d = d.shuffle(buffer_size=2048)
d = d.map(
lambda record: _decode_record(record, name_to_features),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
d = d.batch(batch_size, drop_remainder=is_training)
# When `input_file` is a path to a single file or a list
# containing a single path, disable auto sharding so that
# same input file is sent to all workers.
if isinstance(input_file, str) or len(input_file) == 1:
options = tf.data.Options()
options.experimental_distribute.auto_shard_policy = (
tf.data.experimental.AutoShardPolicy.OFF)
d = d.with_options(options)
d = d.prefetch(tf.data.experimental.AUTOTUNE)
return d
return input_fn
def create_classification_dataset(file_path, seq_length, batch_size,
is_training):
"""Creates input dataset from (tf)records files for pretraining."""
name_to_features = {
"input_ids": tf.io.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.io.FixedLenFeature([seq_length], tf.float32),
"segment_ids": tf.io.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.io.FixedLenFeature([], tf.int64),
"is_real_example": tf.io.FixedLenFeature([], tf.int64),
}
input_fn = file_based_input_fn_builder(file_path, name_to_features,
batch_size, is_training)
dataset = input_fn()
return dataset
def create_squad_dataset(file_path, seq_length, batch_size, is_training):
"""Creates input dataset from (tf)records files for pretraining."""
name_to_features = {
"unique_ids": tf.io.FixedLenFeature([], tf.int64),
"input_ids": tf.io.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.io.FixedLenFeature([seq_length], tf.float32),
"segment_ids": tf.io.FixedLenFeature([seq_length], tf.int64),
"cls_index": tf.io.FixedLenFeature([], tf.int64),
"p_mask": tf.io.FixedLenFeature([seq_length], tf.float32)
}
if is_training:
name_to_features["start_positions"] = tf.io.FixedLenFeature([], tf.int64)
name_to_features["end_positions"] = tf.io.FixedLenFeature([], tf.int64)
name_to_features["is_impossible"] = tf.io.FixedLenFeature([], tf.float32)
input_fn = file_based_input_fn_builder(file_path, name_to_features,
batch_size, is_training)
dataset = input_fn()
return dataset
def get_input_iterator(input_fn, strategy):
"""Returns distributed dataset iterator."""
# When training with TPU pods, datasets needs to be cloned across
# workers. Since Dataset instance cannot be cloned in eager mode, we instead
# pass callable that returns a dataset.
input_data = input_fn()
if callable(input_data):
iterator = iter(strategy.distribute_datasets_from_function(input_data))
else:
iterator = iter(strategy.experimental_distribute_dataset(input_data))
return iterator
def get_classification_input_data(batch_size, seq_len, strategy, is_training,
file_path):
"""Returns input dataset from input file string."""
# When using TPU pods, we need to clone dataset across
# workers and need to pass in function that returns the dataset rather
# than passing dataset instance itself.
use_dataset_fn = isinstance(strategy, tf.distribute.TPUStrategy)
if use_dataset_fn:
if batch_size % strategy.num_replicas_in_sync != 0:
raise ValueError(
"Batch size must be divisible by number of replicas : {}".format(
strategy.num_replicas_in_sync))
# As auto rebatching is not supported in
# `distribute_datasets_from_function()` API, which is
# required when cloning dataset to multiple workers in eager mode,
# we use per-replica batch size.
batch_size = int(batch_size / strategy.num_replicas_in_sync)
def _dataset_fn(ctx=None):
del ctx
train_dataset = create_classification_dataset(
file_path=file_path,
seq_length=seq_len,
batch_size=batch_size,
is_training=is_training)
return train_dataset
return _dataset_fn if use_dataset_fn else _dataset_fn()
def get_squad_input_data(batch_size, seq_len, q_len, strategy, is_training,
file_path):
"""Returns input dataset from input file string."""
# When using TPU pods, we need to clone dataset across
# workers and need to pass in function that returns the dataset rather
# than passing dataset instance itself.
use_dataset_fn = isinstance(strategy, tf.distribute.TPUStrategy)
if use_dataset_fn:
if batch_size % strategy.num_replicas_in_sync != 0:
raise ValueError(
"Batch size must be divisible by number of replicas : {}".format(
strategy.num_replicas_in_sync))
# As auto rebatching is not supported in
# `distribute_datasets_from_function()` API, which is
# required when cloning dataset to multiple workers in eager mode,
# we use per-replica batch size.
batch_size = int(batch_size / strategy.num_replicas_in_sync)
if is_training:
input_glob = os.path.join(
file_path,
"spiece.model.*.slen-{}.qlen-{}.train.tf_record".format(seq_len, q_len))
global_input_paths = tf.io.gfile.glob(input_glob)
else:
global_input_paths = file_path
def _dataset_fn(ctx=None):
del ctx
train_dataset = create_squad_dataset(
file_path=global_input_paths,
seq_length=seq_len,
batch_size=batch_size,
is_training=is_training)
return train_dataset
return _dataset_fn if use_dataset_fn else _dataset_fn()
def _idx_pair_to_mask(beg_indices, end_indices, inputs, tgt_len, num_predict):
"""Turn beg and end indices into actual mask."""
non_func_mask = tf.logical_and(
tf.not_equal(inputs, SEP_ID), tf.not_equal(inputs, CLS_ID))
all_indices = tf.where(non_func_mask, tf.range(tgt_len, dtype=tf.int64),
tf.constant(-1, shape=[tgt_len], dtype=tf.int64))
candidate_matrix = tf.cast(
tf.logical_and(all_indices[None, :] >= beg_indices[:, None],
all_indices[None, :] < end_indices[:, None]), tf.float32)
cumsum_matrix = tf.reshape(
tf.cumsum(tf.reshape(candidate_matrix, [-1])), [-1, tgt_len])
masked_matrix = tf.cast(cumsum_matrix <= num_predict, tf.float32)
target_mask = tf.reduce_sum(candidate_matrix * masked_matrix, axis=0)
is_masked = tf.cast(target_mask, tf.bool)
return is_masked, target_mask
def _word_span_mask(inputs, tgt_len, num_predict, min_num_words, max_num_words,
boundary):
"""Sample whole word spans as prediction targets."""
# Note: 1.2 is the token-to-word ratio
mask_alpha = tgt_len / num_predict / 1.2
round_to_int = lambda x: tf.cast(tf.round(x), tf.int64)
# Sample span lengths from a zipf distribution
span_len_seq = np.arange(min_num_words, max_num_words + 1)
probs = np.array([1.0 / (i + 1) for i in span_len_seq])
probs /= np.sum(probs)
logits = tf.constant(np.log(probs), dtype=tf.float32)
# Sample `num_predict` words here: note that this is over sampling
span_lens = tf.random.categorical(
logits=logits[None],
num_samples=num_predict,
dtype=tf.int64,
)[0] + min_num_words
# Sample the ratio [0.0, 1.0) of left context lengths
span_lens_float = tf.cast(span_lens, tf.float32)
left_ratio = tf.random.uniform(shape=[num_predict], minval=0.0, maxval=1.0)
left_ctx_len = left_ratio * span_lens_float * (mask_alpha - 1)
left_ctx_len = round_to_int(left_ctx_len)
right_offset = round_to_int(span_lens_float * mask_alpha) - left_ctx_len
beg_indices = (
tf.cumsum(left_ctx_len) + tf.cumsum(right_offset, exclusive=True))
end_indices = beg_indices + span_lens
# Remove out of range indices
max_boundary_index = tf.cast(tf.shape(boundary)[0] - 1, tf.int64)
valid_idx_mask = end_indices < max_boundary_index
beg_indices = tf.boolean_mask(beg_indices, valid_idx_mask)
end_indices = tf.boolean_mask(end_indices, valid_idx_mask)
beg_indices = tf.gather(boundary, beg_indices)
end_indices = tf.gather(boundary, end_indices)
# Shuffle valid indices
num_valid = tf.cast(tf.shape(beg_indices)[0], tf.int64)
order = tf.random.shuffle(tf.range(num_valid, dtype=tf.int64))
beg_indices = tf.gather(beg_indices, order)
end_indices = tf.gather(end_indices, order)
return _idx_pair_to_mask(beg_indices, end_indices, inputs, tgt_len,
num_predict)
def _token_span_mask(inputs, tgt_len, num_predict, min_num_tokens,
max_num_tokens):
"""Sample token spans as prediction targets."""
mask_alpha = tgt_len / num_predict
round_to_int = lambda x: tf.cast(tf.round(x), tf.int64)
# Sample span lengths from a zipf distribution
span_len_seq = np.arange(min_num_tokens, max_num_tokens + 1)
probs = np.array([1.0 / (i + 1) for i in span_len_seq])
probs /= np.sum(probs)
logits = tf.constant(np.log(probs), dtype=tf.float32)
span_lens = tf.random.categorical(
logits=logits[None],
num_samples=num_predict,
dtype=tf.int64,
)[0] + min_num_tokens
# Sample the ratio [0.0, 1.0) of left context lengths
span_lens_float = tf.cast(span_lens, tf.float32)
left_ratio = tf.random.uniform(shape=[num_predict], minval=0.0, maxval=1.0)
left_ctx_len = left_ratio * span_lens_float * (mask_alpha - 1)
left_ctx_len = round_to_int(left_ctx_len)
# Compute the offset from left start to the right end
right_offset = round_to_int(span_lens_float * mask_alpha) - left_ctx_len
# Get the actual begin and end indices
beg_indices = (
tf.cumsum(left_ctx_len) + tf.cumsum(right_offset, exclusive=True))
end_indices = beg_indices + span_lens
# Remove out of range indices
valid_idx_mask = end_indices < tgt_len
beg_indices = tf.boolean_mask(beg_indices, valid_idx_mask)
end_indices = tf.boolean_mask(end_indices, valid_idx_mask)
# Shuffle valid indices
num_valid = tf.cast(tf.shape(beg_indices)[0], tf.int64)
order = tf.random.shuffle(tf.range(num_valid, dtype=tf.int64))
beg_indices = tf.gather(beg_indices, order)
end_indices = tf.gather(end_indices, order)
return _idx_pair_to_mask(beg_indices, end_indices, inputs, tgt_len,
num_predict)
def _whole_word_mask(inputs, tgt_len, num_predict, boundary):
"""Sample whole words as prediction targets."""
pair_indices = tf.concat([boundary[:-1, None], boundary[1:, None]], axis=1)
cand_pair_indices = tf.random.shuffle(pair_indices)[:num_predict]
beg_indices = cand_pair_indices[:, 0]
end_indices = cand_pair_indices[:, 1]
return _idx_pair_to_mask(beg_indices, end_indices, inputs, tgt_len,
num_predict)
def _single_token_mask(inputs, tgt_len, num_predict):
"""Sample individual tokens as prediction targets."""
all_indices = tf.range(tgt_len, dtype=tf.int64)
non_func_mask = tf.logical_and(
tf.not_equal(inputs, SEP_ID), tf.not_equal(inputs, CLS_ID))
non_func_indices = tf.boolean_mask(all_indices, non_func_mask)
masked_pos = tf.random.shuffle(non_func_indices)
masked_pos = tf.sort(masked_pos[:num_predict])
target_mask = tf.sparse_to_dense(
sparse_indices=masked_pos,
output_shape=[tgt_len],
sparse_values=1.0,
default_value=0.0)
is_masked = tf.cast(target_mask, tf.bool)
return is_masked, target_mask
def _online_sample_masks(inputs,
tgt_len,
num_predict,
online_masking_config,
boundary=None):
"""Sample target positions to predict."""
logging.info("Online sample with strategy: `%s`.",
online_masking_config.sample_strategy)
if online_masking_config.sample_strategy == "single_token":
return _single_token_mask(inputs, tgt_len, num_predict)
elif online_masking_config.sample_strategy == "whole_word":
assert boundary is not None, "whole word sampling requires `boundary`"
return _whole_word_mask(inputs, tgt_len, num_predict, boundary)
elif online_masking_config.sample_strategy == "token_span":
return _token_span_mask(inputs, tgt_len, num_predict,
online_masking_config.min_num_tokens,
online_masking_config.max_num_tokens)
elif online_masking_config.sample_strategy == "word_span":
assert boundary is not None, "word span sampling requires `boundary`"
return _word_span_mask(inputs, tgt_len, num_predict,
online_masking_config.min_num_words,
online_masking_config.max_num_words, boundary)
else:
raise NotImplementedError
def create_pretrain_dataset(file_names,
bsz_per_core,
seq_len,
reuse_len,
perm_size,
leak_ratio,
online_masking_config,
num_predict=None,
input_pipeline_context=None):
"""Creates pretrain dataset."""
def parser(record):
"""Function used to parse tfrecord."""
record_spec = {
"input": tf.io.FixedLenFeature([seq_len], tf.int64),
"seg_id": tf.io.FixedLenFeature([seq_len], tf.int64),
"label": tf.io.FixedLenFeature([1], tf.int64),
}
if online_masking_config.sample_strategy in ["whole_word", "word_span"]:
logging.info("Add `boundary` spec for %s",
online_masking_config.sample_strategy)
record_spec["boundary"] = tf.io.VarLenFeature(tf.int64)
# retrieve serialized example
example = tf.io.parse_single_example(
serialized=record, features=record_spec)
inputs = example.pop("input")
if online_masking_config.sample_strategy in ["whole_word", "word_span"]:
boundary = tf.sparse.to_dense(example.pop("boundary"))
else:
boundary = None
is_masked, _ = _online_sample_masks(
inputs, seq_len, num_predict, online_masking_config, boundary=boundary)
if reuse_len > 0:
##### Use memory
# permutate the reuse and non-reuse parts separately
non_reuse_len = seq_len - reuse_len
assert reuse_len % perm_size == 0 and non_reuse_len % perm_size == 0
# Creates permutation mask and target mask for the first reuse_len tokens.
# The tokens in this part are reused from the last sequence.
perm_mask_0, target_mask_0, input_k_0, input_q_0 = _local_perm(
inputs[:reuse_len], is_masked[:reuse_len], perm_size, reuse_len,
leak_ratio)
# Creates permutation mask and target mask for the rest of tokens in
# current example, which are concatentation of two new segments.
perm_mask_1, target_mask_1, input_k_1, input_q_1 = _local_perm(
inputs[reuse_len:], is_masked[reuse_len:], perm_size, non_reuse_len,
leak_ratio)
perm_mask_0 = tf.concat(
[perm_mask_0, tf.ones([reuse_len, non_reuse_len])], axis=1)
perm_mask_1 = tf.concat(
[tf.zeros([non_reuse_len, reuse_len]), perm_mask_1], axis=1)
perm_mask = tf.concat([perm_mask_0, perm_mask_1], axis=0)
target_mask = tf.concat([target_mask_0, target_mask_1], axis=0)
input_k = tf.concat([input_k_0, input_k_1], axis=0)
input_q = tf.concat([input_q_0, input_q_1], axis=0)
else:
##### Do not use memory
assert seq_len % perm_size == 0
# permutate the entire sequence together
perm_mask, target_mask, input_k, input_q = _local_perm(
inputs, is_masked, perm_size, seq_len, leak_ratio)
# reshape back to fixed shape
example["perm_mask"] = tf.reshape(perm_mask, [seq_len, seq_len])
example["input_ids"] = tf.reshape(input_k, [seq_len])
example["input_q"] = tf.reshape(input_q, [seq_len])
# Directly use raw inputs as the target
target = inputs
if num_predict is not None:
indices = tf.range(seq_len, dtype=tf.int64)
bool_target_mask = tf.cast(target_mask, tf.bool)
indices = tf.boolean_mask(indices, bool_target_mask)
##### extra padding due to CLS/SEP introduced after prepro
actual_num_predict = tf.shape(indices)[0]
pad_len = num_predict - actual_num_predict
##### target_mapping
target_mapping = tf.one_hot(indices, seq_len, dtype=tf.float32)
paddings = tf.zeros([pad_len, seq_len], dtype=target_mapping.dtype)
target_mapping = tf.concat([target_mapping, paddings], axis=0)
example["target_mapping"] = tf.reshape(target_mapping,
[num_predict, seq_len])
##### target
target = tf.boolean_mask(target, bool_target_mask)
paddings = tf.zeros([pad_len], dtype=target.dtype)
target = tf.concat([target, paddings], axis=0)
example["target"] = tf.reshape(target, [num_predict])
##### target mask
target_mask = tf.concat([
tf.ones([actual_num_predict], dtype=tf.float32),
tf.zeros([pad_len], dtype=tf.float32)
],
axis=0)
example["target_mask"] = tf.reshape(target_mask, [num_predict])
else:
example["target"] = tf.reshape(target, [seq_len])
example["target_mask"] = tf.reshape(target_mask, [seq_len])
for key in list(example.keys()):
val = example[key]
if tf_keras.backend.is_sparse(val):
val = tf.sparse.to_dense(val)
if val.dtype == tf.int64:
val = tf.cast(val, tf.int32)
example[key] = val
for k, v in example.items():
logging.info("%s: %s", k, v)
return example
dataset = parse_files_to_dataset(
parser=parser,
file_paths=file_names,
bsz_per_core=bsz_per_core,
sequential=reuse_len > 0,
input_pipeline_context=input_pipeline_context)
return dataset
def format_filename(prefix,
suffix,
bsz_per_host,
seq_len,
reuse_len=None,
uncased=False):
"""Generates input file name pattern."""
if reuse_len is not None and reuse_len > 0:
reuse_str = "reuse-{}.".format(reuse_len)
bsz_str = "hostbsz-{}.".format(bsz_per_host)
else:
reuse_str = ""
bsz_str = ""
if not uncased:
case_str = ""
else:
case_str = "uncased."
file_name = "{}.seq-{}.{}{}{}{}".format(prefix, seq_len, reuse_str, bsz_str,
case_str, suffix)
return file_name
def get_pretrain_input_data(batch_size,
seq_len,
strategy,
file_path,
reuse_len,
perm_size,
leak_ratio,
num_predict,
uncased,
online_masking_config,
num_hosts=1):
"""Returns input dataset from input file string."""
# When using TPU pods, we need to clone dataset across
# workers and need to pass in function that returns the dataset rather
# than passing dataset instance itself.
use_dataset_fn = isinstance(strategy, tf.distribute.TPUStrategy)
split = "train"
bsz_per_host = int(batch_size / num_hosts)
record_glob_base = format_filename(
prefix="meta.{}.pass-*".format(split),
suffix="json*",
bsz_per_host=bsz_per_host,
seq_len=seq_len,
reuse_len=reuse_len,
uncased=uncased)
def _get_num_batch(info):
if "num_batch" in info:
return info["num_batch"]
elif "num_example" in info:
return info["num_example"] / bsz_per_host
else:
raise ValueError("Do not have sample info.")
if use_dataset_fn:
if batch_size % strategy.num_replicas_in_sync != 0:
raise ValueError(
"Batch size must be divisible by number of replicas : {}".format(
strategy.num_replicas_in_sync))
# As auto rebatching is not supported in
# `distribute_datasets_from_function()` API, which is
# required when cloning dataset to multiple workers in eager mode,
# we use per-replica batch size.
batch_size = int(batch_size / strategy.num_replicas_in_sync)
record_info = {"num_batch": 0, "filenames": []}
tfrecord_dirs = file_path.split(",")
logging.info("Use the following tfrecord dirs: %s", tfrecord_dirs)
for idx, record_dir in enumerate(tfrecord_dirs):
record_glob = os.path.join(record_dir, record_glob_base)
logging.info("[%d] Record glob: %s", idx, record_glob)
record_paths = sorted(tf.io.gfile.glob(record_glob))
logging.info("[%d] Num of record info path: %d", idx, len(record_paths))
cur_record_info = {"num_batch": 0, "filenames": []}
for record_info_path in record_paths:
with tf.io.gfile.GFile(record_info_path, "r") as fp:
info = json.load(fp)
cur_record_info["num_batch"] += int(_get_num_batch(info))
cur_record_info["filenames"] += info["filenames"]
# overwrite directory for `cur_record_info`
new_filenames = []
for filename in cur_record_info["filenames"]:
basename = os.path.basename(filename)
new_filename = os.path.join(record_dir, basename)
new_filenames.append(new_filename)
cur_record_info["filenames"] = new_filenames
logging.info("[Dir %d] Number of chosen batches: %s", idx,
cur_record_info["num_batch"])
logging.info("[Dir %d] Number of chosen files: %s", idx,
len(cur_record_info["filenames"]))
logging.info(cur_record_info["filenames"])
# add `cur_record_info` to global `record_info`
record_info["num_batch"] += cur_record_info["num_batch"]
record_info["filenames"] += cur_record_info["filenames"]
logging.info("Total number of batches: %d", record_info["num_batch"])
logging.info("Total number of files: %d", len(record_info["filenames"]))
logging.info(record_info["filenames"])
def _dataset_fn(ctx=None):
"""Function that can create a pretrain dataset."""
train_dataset = create_pretrain_dataset(
file_names=record_info["filenames"],
bsz_per_core=batch_size,
seq_len=seq_len,
reuse_len=reuse_len,
perm_size=perm_size,
leak_ratio=leak_ratio,
online_masking_config=online_masking_config,
num_predict=num_predict,
input_pipeline_context=ctx)
return train_dataset
return _dataset_fn if use_dataset_fn else _dataset_fn()
def parse_files_to_dataset(parser,
file_paths,
bsz_per_core,
sequential,
input_pipeline_context=None):
"""Creates the dataset given file paths."""
dataset = tf.data.Dataset.from_tensor_slices(file_paths)
# Note: we cannot perform sample-level shuffle here because this will violate
# the consecutive requirement of data stream.
if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
input_pipeline_context.input_pipeline_id)
# file-level shuffle
if len(file_paths) > 1:
dataset = dataset.shuffle(len(file_paths))
if sequential:
# Note: cannot perform sample-level shuffle here because this will violate
# the consecutive requirement of data stream.
dataset = tf.data.TFRecordDataset(dataset)
else:
# `cycle_length` is the number of parallel files that get read.
cycle_length = min(8, len(file_paths))
logging.info("Interleave %d files", cycle_length)
dataset = dataset.apply(
tf.data.experimental.parallel_interleave(
tf.data.TFRecordDataset, cycle_length=cycle_length))
buffer_size = 2048
logging.info("Perform sample-level shuffle with size %d", buffer_size)
dataset = dataset.shuffle(buffer_size=buffer_size)
dataset = dataset.cache().repeat().map(parser)
dataset = dataset.batch(bsz_per_core, drop_remainder=True)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def _local_perm(inputs, is_masked, perm_size, seq_len, leak_ratio):
"""Samples a permutation of the factorization order.
Creates perm_mask and target_mask accordingly.
Args:
inputs: int64 Tensor in shape [seq_len], input ids.
is_masked: bool Tensor in shape [seq_len]. True means being selected for
partial prediction.
perm_size: the length of longest permutation. Could be set to be reuse_len.
Should not be larger than reuse_len or there will be data leaks.
seq_len: int, sequence length.
leak_ratio: float, percent of masked tokens that are leaked.
Returns:
perm_mask: float32 Tensor in shape [seq_len, seq_len] consisted of 0 and 1.
If perm_mask[i][j] == 1, it means the ith token (in original order) cannot
attend to the jth token
(in original order). This case will happen only when the ith token's
permutated position <= the jth token's permutated position,
and the jth token is masked or is func token. If perm_mask[i][j] == 0, it
means the ith token (in original order) can attend to the jth token
(in original order). Note that non-masked tokens can be attended by all
other tokens, which is different from the description in original paper.
target_mask: float32 Tensor in shape [seq_len] consisted of 0 and 1. If
target_mask[i] == 1,
the ith token needs to be predicted and mask will be used as input. This
token will count for loss.
If target_mask[i] == 0, token (or [SEP], [CLS]) will be used as input. This
token will not count for loss.
inputs_k: int64 Tensor in shape [seq_len], input ids.
inputs_q: float32 Tensor in shape [seq_len], the same as target_mask.
"""
# Generate permutation indices
index = tf.range(seq_len, dtype=tf.int64)
index = tf.transpose(tf.reshape(index, [-1, perm_size]))
index = tf.random.shuffle(index)
index = tf.reshape(tf.transpose(index), [-1])
# non-functional tokens
non_func_tokens = tf.logical_not(
tf.logical_or(tf.equal(inputs, SEP_ID), tf.equal(inputs, CLS_ID)))
masked_tokens = tf.logical_and(is_masked, non_func_tokens)
non_masked_or_func_tokens = tf.logical_not(masked_tokens)
smallest_index = -2 * tf.ones([seq_len], dtype=tf.int64)
# Similar to BERT, randomly leak some masked tokens
if leak_ratio > 0:
leak_tokens = tf.logical_and(
masked_tokens,
tf.random.uniform([seq_len], maxval=1.0) < leak_ratio)
can_attend_self = tf.logical_or(non_masked_or_func_tokens, leak_tokens)
else:
can_attend_self = non_masked_or_func_tokens
to_index = tf.where(can_attend_self, smallest_index, index)
from_index = tf.where(can_attend_self, to_index + 1, to_index)
# For masked tokens, can attend if i > j
# For context tokens, always can attend each other
can_attend = from_index[:, None] > to_index[None, :]
# In modeling, 1 indicates cannot attend. Hence, reverse the value here.
perm_mask = 1.0 - tf.cast(can_attend, tf.float32)
# Only masked tokens are included in the loss
target_mask = tf.cast(masked_tokens, tf.float32)
# construct inputs_k
inputs_k = inputs
# construct inputs_q
inputs_q = masked_tokens
return perm_mask, target_mask, inputs_k, inputs_q
|