File size: 22,341 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Data parser and processing.

Parse image and ground truths in a dataset to training targets and package them
into (image, labels) tuple for ShapeMask.

Weicheng Kuo, Anelia Angelova, Jitendra Malik, Tsung-Yi Lin
ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors.
arXiv:1904.03239.
"""
import tensorflow as tf, tf_keras

from official.legacy.detection.dataloader import anchor
from official.legacy.detection.dataloader import mode_keys as ModeKeys
from official.legacy.detection.dataloader import tf_example_decoder
from official.legacy.detection.utils import box_utils
from official.legacy.detection.utils import class_utils
from official.legacy.detection.utils import dataloader_utils
from official.legacy.detection.utils import input_utils


def pad_to_size(input_tensor, size):
  """Pads data with zeros to a given length at the first dimension if needed.

  Args:
    input_tensor: `Tensor` with any dimension.
    size: `int` number for the first dimension of output Tensor.

  Returns:
    `Tensor` with the first dimension padded to `size` if the first diemsion
    is less than `size`, otherwise no padding.
  """
  input_shape = tf.shape(input_tensor)
  padding_shape = []

  # Computes the padding length on the first dimension.
  padding_length = tf.maximum(0, size - tf.shape(input_tensor)[0])
  assert_length = tf.Assert(
      tf.greater_equal(padding_length, 0), [padding_length])
  with tf.control_dependencies([assert_length]):
    padding_shape.append(padding_length)

  # Copies shapes of the rest of input shape dimensions.
  for i in range(1, len(input_shape)):
    padding_shape.append(tf.shape(input=input_tensor)[i])

  # Pads input tensor to the fixed first dimension.
  paddings = tf.cast(tf.zeros(padding_shape), input_tensor.dtype)
  padded_tensor = tf.concat([input_tensor, paddings], axis=0)
  return padded_tensor


class Parser(object):
  """ShapeMask Parser to parse an image and its annotations into a dictionary of tensors."""

  def __init__(self,
               output_size,
               min_level,
               max_level,
               num_scales,
               aspect_ratios,
               anchor_size,
               use_category=True,
               outer_box_scale=1.0,
               box_jitter_scale=0.025,
               num_sampled_masks=8,
               mask_crop_size=32,
               mask_min_level=3,
               mask_max_level=5,
               upsample_factor=4,
               match_threshold=0.5,
               unmatched_threshold=0.5,
               aug_rand_hflip=False,
               aug_scale_min=1.0,
               aug_scale_max=1.0,
               skip_crowd_during_training=True,
               max_num_instances=100,
               use_bfloat16=True,
               mask_train_class='all',
               mode=None):
    """Initializes parameters for parsing annotations in the dataset.

    Args:
      output_size: `Tensor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
      min_level: `int` number of minimum level of the output feature pyramid.
      max_level: `int` number of maximum level of the output feature pyramid.
      num_scales: `int` number representing intermediate scales added
        on each level. For instances, num_scales=2 adds one additional
        intermediate anchor scales [2^0, 2^0.5] on each level.
      aspect_ratios: `list` of float numbers representing the aspect raito
        anchors added on each level. The number indicates the ratio of width to
        height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
        on each scale level.
      anchor_size: `float` number representing the scale of size of the base
        anchor to the feature stride 2^level.
      use_category: if `False`, treat all object in all classes in one
        foreground category.
      outer_box_scale: `float` number in a range of [1.0, inf) representing
        the scale from object box to outer box. The mask branch predicts
        instance mask enclosed in outer box.
      box_jitter_scale: `float` number representing the noise magnitude to
        jitter the training groundtruth boxes for mask branch.
      num_sampled_masks: `int` number of sampled masks for training.
      mask_crop_size: `list` for [height, width] of output training masks.
      mask_min_level: `int` number indicating the minimum feature level to
        obtain instance features.
      mask_max_level: `int` number indicating the maximum feature level to
        obtain instance features.
      upsample_factor: `int` factor of upsampling the fine mask predictions.
      match_threshold: `float` number between 0 and 1 representing the
        lower-bound threshold to assign positive labels for anchors. An anchor
        with a score over the threshold is labeled positive.
      unmatched_threshold: `float` number between 0 and 1 representing the
        upper-bound threshold to assign negative labels for anchors. An anchor
        with a score below the threshold is labeled negative.
      aug_rand_hflip: `bool`, if True, augment training with random
        horizontal flip.
      aug_scale_min: `float`, the minimum scale applied to `output_size` for
        data augmentation during training.
      aug_scale_max: `float`, the maximum scale applied to `output_size` for
        data augmentation during training.
      skip_crowd_during_training: `bool`, if True, skip annotations labeled with
        `is_crowd` equals to 1.
      max_num_instances: `int` number of maximum number of instances in an
        image. The groundtruth data will be padded to `max_num_instances`.
      use_bfloat16: `bool`, if True, cast output image to tf.bfloat16.
      mask_train_class: a string of experiment mode: `all`, `voc` or `nonvoc`.
      mode: a ModeKeys. Specifies if this is training, evaluation, prediction
        or prediction with groundtruths in the outputs.
    """
    self._mode = mode
    self._mask_train_class = mask_train_class
    self._max_num_instances = max_num_instances
    self._skip_crowd_during_training = skip_crowd_during_training
    self._is_training = (mode == ModeKeys.TRAIN)

    self._example_decoder = tf_example_decoder.TfExampleDecoder(
        include_mask=True)

    # Anchor.
    self._output_size = output_size
    self._min_level = min_level
    self._max_level = max_level
    self._num_scales = num_scales
    self._aspect_ratios = aspect_ratios
    self._anchor_size = anchor_size
    self._match_threshold = match_threshold
    self._unmatched_threshold = unmatched_threshold

    # Data augmentation.
    self._aug_rand_hflip = aug_rand_hflip
    self._aug_scale_min = aug_scale_min
    self._aug_scale_max = aug_scale_max

    # Device.
    self._use_bfloat16 = use_bfloat16

    # ShapeMask specific.
    # Control of which category to use.
    self._use_category = use_category
    self._num_sampled_masks = num_sampled_masks
    self._mask_crop_size = mask_crop_size
    self._mask_min_level = mask_min_level
    self._mask_max_level = mask_max_level
    self._outer_box_scale = outer_box_scale
    self._box_jitter_scale = box_jitter_scale
    self._up_sample_factor = upsample_factor

    # Data is parsed depending on the model Modekey.
    if mode == ModeKeys.TRAIN:
      self._parse_fn = self._parse_train_data
    elif mode == ModeKeys.EVAL:
      self._parse_fn = self._parse_eval_data
    elif mode == ModeKeys.PREDICT or mode == ModeKeys.PREDICT_WITH_GT:
      self._parse_fn = self._parse_predict_data
    else:
      raise ValueError('mode is not defined.')

  def __call__(self, value):
    """Parses data to an image and associated training labels.

    Args:
      value: a string tensor holding a serialized tf.Example proto.

    Returns:
      inputs:
        image: image tensor that is preproessed to have normalized value and
          dimension [output_size[0], output_size[1], 3]
        mask_boxes: sampled boxes that tightly enclose the training masks. The
          box is represented in [y1, x1, y2, x2] format. The tensor is sampled
          to the fixed dimension [self._num_sampled_masks, 4].
        mask_outer_boxes: loose box that enclose sampled tight box. The
          box is represented in [y1, x1, y2, x2] format. The tensor is sampled
          to the fixed dimension [self._num_sampled_masks, 4].
        mask_classes: the class ids of sampled training masks. The tensor has
          shape [self._num_sampled_masks].
      labels:
        cls_targets: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, anchors_per_location]. The height_l and
          width_l represent the dimension of class logits at l-th level.
        box_targets: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, anchors_per_location * 4]. The height_l and
          width_l represent the dimension of bounding box regression output at
          l-th level.
        num_positives: number of positive anchors in the image.
        anchor_boxes: ordered dictionary with keys
          [min_level, min_level+1, ..., max_level]. The values are tensor with
          shape [height_l, width_l, 4] representing anchor boxes at each level.
        image_scale: 2D float `Tensor` representing scale factors that apply
          to [height, width] of input image.
        mask_targets: training binary mask targets. The tensor has shape
          [self._num_sampled_masks, self._mask_crop_size, self._mask_crop_size].
        mask_is_valid: the binary tensor to indicate if the sampled masks are
          valide. The sampled masks are invalid when no mask annotations are
          included in the image. The tensor has shape [1].
        groundtruths:
          source_id: source image id. Default value -1 if the source id is empty
            in the groundtruth annotation.
          boxes: groundtruth bounding box annotations. The box is represented in
            [y1, x1, y2, x2] format. The tensor is padded with -1 to the fixed
            dimension [self._max_num_instances, 4].
          classes: groundtruth classes annotations. The tensor is padded with
            -1 to the fixed dimension [self._max_num_instances].
          areas: groundtruth areas annotations. The tensor is padded with -1
            to the fixed dimension [self._max_num_instances].
          is_crowds: groundtruth annotations to indicate if an annotation
            represents a group of instances by value {0, 1}. The tensor is
            padded with 0 to the fixed dimension [self._max_num_instances].
    """
    with tf.name_scope('parser'):
      data = self._example_decoder.decode(value)
      return self._parse_fn(data)

  def _parse_train_data(self, data):
    """Parse data for ShapeMask training."""
    classes = data['groundtruth_classes']
    boxes = data['groundtruth_boxes']
    masks = data['groundtruth_instance_masks']
    is_crowds = data['groundtruth_is_crowd']
    # Skips annotations with `is_crowd` = True.
    if self._skip_crowd_during_training and self._is_training:
      num_groundtrtuhs = tf.shape(classes)[0]
      with tf.control_dependencies([num_groundtrtuhs, is_crowds]):
        indices = tf.cond(
            tf.greater(tf.size(is_crowds), 0),
            lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
            lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64))
      classes = tf.gather(classes, indices)
      boxes = tf.gather(boxes, indices)
      masks = tf.gather(masks, indices)

    # Gets original image and its size.
    image = data['image']
    image_shape = tf.shape(image)[0:2]

    # If not using category, makes all categories with id = 0.
    if not self._use_category:
      classes = tf.cast(tf.greater(classes, 0), dtype=tf.float32)

    # Normalizes image with mean and std pixel values.
    image = input_utils.normalize_image(image)

    # Flips image randomly during training.
    if self._aug_rand_hflip:
      image, boxes, masks = input_utils.random_horizontal_flip(
          image, boxes, masks)

    # Converts boxes from normalized coordinates to pixel coordinates.
    boxes = box_utils.denormalize_boxes(boxes, image_shape)

    # Resizes and crops image.
    image, image_info = input_utils.resize_and_crop_image(
        image,
        self._output_size,
        self._output_size,
        aug_scale_min=self._aug_scale_min,
        aug_scale_max=self._aug_scale_max)
    image_scale = image_info[2, :]
    offset = image_info[3, :]

    # Resizes and crops boxes and masks.
    boxes = input_utils.resize_and_crop_boxes(
        boxes, image_scale, image_info[1, :], offset)

    # Filters out ground truth boxes that are all zeros.
    indices = box_utils.get_non_empty_box_indices(boxes)
    boxes = tf.gather(boxes, indices)
    classes = tf.gather(classes, indices)
    masks = tf.gather(masks, indices)

    # Assigns anchors.
    input_anchor = anchor.Anchor(
        self._min_level, self._max_level, self._num_scales,
        self._aspect_ratios, self._anchor_size, self._output_size)
    anchor_labeler = anchor.AnchorLabeler(
        input_anchor, self._match_threshold, self._unmatched_threshold)
    (cls_targets,
     box_targets,
     num_positives) = anchor_labeler.label_anchors(
         boxes,
         tf.cast(tf.expand_dims(classes, axis=1), tf.float32))

    # Sample groundtruth masks/boxes/classes for mask branch.
    num_masks = tf.shape(masks)[0]
    mask_shape = tf.shape(masks)[1:3]

    # Pad sampled boxes/masks/classes to a constant batch size.
    padded_boxes = pad_to_size(boxes, self._num_sampled_masks)
    padded_classes = pad_to_size(classes, self._num_sampled_masks)
    padded_masks = pad_to_size(masks, self._num_sampled_masks)

    # Randomly sample groundtruth masks for mask branch training. For the image
    # without groundtruth masks, it will sample the dummy padded tensors.
    rand_indices = tf.random.shuffle(
        tf.range(tf.maximum(num_masks, self._num_sampled_masks)))
    rand_indices = tf.math.mod(rand_indices, tf.maximum(num_masks, 1))
    rand_indices = rand_indices[0:self._num_sampled_masks]
    rand_indices = tf.reshape(rand_indices, [self._num_sampled_masks])

    sampled_boxes = tf.gather(padded_boxes, rand_indices)
    sampled_classes = tf.gather(padded_classes, rand_indices)
    sampled_masks = tf.gather(padded_masks, rand_indices)
    # Jitter the sampled boxes to mimic the noisy detections.
    sampled_boxes = box_utils.jitter_boxes(
        sampled_boxes, noise_scale=self._box_jitter_scale)
    sampled_boxes = box_utils.clip_boxes(sampled_boxes, self._output_size)
    # Compute mask targets in feature crop. A feature crop fully contains a
    # sampled box.
    mask_outer_boxes = box_utils.compute_outer_boxes(
        sampled_boxes, tf.shape(image)[0:2], scale=self._outer_box_scale)
    mask_outer_boxes = box_utils.clip_boxes(mask_outer_boxes, self._output_size)
    # Compensate the offset of mask_outer_boxes to map it back to original image
    # scale.
    mask_outer_boxes_ori = mask_outer_boxes
    mask_outer_boxes_ori += tf.tile(tf.expand_dims(offset, axis=0), [1, 2])
    mask_outer_boxes_ori /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2])
    norm_mask_outer_boxes_ori = box_utils.normalize_boxes(
        mask_outer_boxes_ori, mask_shape)

    # Set sampled_masks shape to [batch_size, height, width, 1].
    sampled_masks = tf.cast(tf.expand_dims(sampled_masks, axis=-1), tf.float32)
    mask_targets = tf.image.crop_and_resize(
        sampled_masks,
        norm_mask_outer_boxes_ori,
        box_indices=tf.range(self._num_sampled_masks),
        crop_size=[self._mask_crop_size, self._mask_crop_size],
        method='bilinear',
        extrapolation_value=0,
        name='train_mask_targets')
    mask_targets = tf.where(tf.greater_equal(mask_targets, 0.5),
                            tf.ones_like(mask_targets),
                            tf.zeros_like(mask_targets))
    mask_targets = tf.squeeze(mask_targets, axis=-1)
    if self._up_sample_factor > 1:
      fine_mask_targets = tf.image.crop_and_resize(
          sampled_masks,
          norm_mask_outer_boxes_ori,
          box_indices=tf.range(self._num_sampled_masks),
          crop_size=[
              self._mask_crop_size * self._up_sample_factor,
              self._mask_crop_size * self._up_sample_factor
          ],
          method='bilinear',
          extrapolation_value=0,
          name='train_mask_targets')
      fine_mask_targets = tf.where(
          tf.greater_equal(fine_mask_targets, 0.5),
          tf.ones_like(fine_mask_targets), tf.zeros_like(fine_mask_targets))
      fine_mask_targets = tf.squeeze(fine_mask_targets, axis=-1)
    else:
      fine_mask_targets = mask_targets

    # If bfloat16 is used, casts input image to tf.bfloat16.
    if self._use_bfloat16:
      image = tf.cast(image, dtype=tf.bfloat16)

    valid_image = tf.cast(tf.not_equal(num_masks, 0), tf.int32)
    if self._mask_train_class == 'all':
      mask_is_valid = valid_image * tf.ones_like(sampled_classes, tf.int32)
    else:
      # Get the intersection of sampled classes with training splits.
      mask_valid_classes = tf.cast(
          tf.expand_dims(
              class_utils.coco_split_class_ids(self._mask_train_class), 1),
          sampled_classes.dtype)
      match = tf.reduce_any(
          tf.equal(tf.expand_dims(sampled_classes, 0), mask_valid_classes), 0)
      mask_is_valid = valid_image * tf.cast(match, tf.int32)

    # Packs labels for model_fn outputs.
    labels = {
        'cls_targets': cls_targets,
        'box_targets': box_targets,
        'anchor_boxes': input_anchor.multilevel_boxes,
        'num_positives': num_positives,
        'image_info': image_info,
        # For ShapeMask.
        'mask_targets': mask_targets,
        'fine_mask_targets': fine_mask_targets,
        'mask_is_valid': mask_is_valid,
    }

    inputs = {
        'image': image,
        'image_info': image_info,
        'mask_boxes': sampled_boxes,
        'mask_outer_boxes': mask_outer_boxes,
        'mask_classes': sampled_classes,
    }
    return inputs, labels

  def _parse_predict_data(self, data):
    """Parse data for ShapeMask training."""
    classes = data['groundtruth_classes']
    boxes = data['groundtruth_boxes']
    masks = data['groundtruth_instance_masks']

    # Gets original image and its size.
    image = data['image']
    image_shape = tf.shape(image)[0:2]

    # If not using category, makes all categories with id = 0.
    if not self._use_category:
      classes = tf.cast(tf.greater(classes, 0), dtype=tf.float32)

    # Normalizes image with mean and std pixel values.
    image = input_utils.normalize_image(image)

    # Converts boxes from normalized coordinates to pixel coordinates.
    boxes = box_utils.denormalize_boxes(boxes, image_shape)

    # Resizes and crops image.
    image, image_info = input_utils.resize_and_crop_image(
        image,
        self._output_size,
        self._output_size,
        aug_scale_min=1.0,
        aug_scale_max=1.0)
    image_scale = image_info[2, :]
    offset = image_info[3, :]

    # Resizes and crops boxes and masks.
    boxes = input_utils.resize_and_crop_boxes(
        boxes, image_scale, image_info[1, :], offset)
    masks = input_utils.resize_and_crop_masks(
        tf.expand_dims(masks, axis=-1), image_scale, self._output_size, offset)

    # Filters out ground truth boxes that are all zeros.
    indices = box_utils.get_non_empty_box_indices(boxes)
    boxes = tf.gather(boxes, indices)
    classes = tf.gather(classes, indices)

    # Assigns anchors.
    input_anchor = anchor.Anchor(
        self._min_level, self._max_level, self._num_scales,
        self._aspect_ratios, self._anchor_size, self._output_size)
    anchor_labeler = anchor.AnchorLabeler(
        input_anchor, self._match_threshold, self._unmatched_threshold)

    # If bfloat16 is used, casts input image to tf.bfloat16.
    if self._use_bfloat16:
      image = tf.cast(image, dtype=tf.bfloat16)

    labels = {
        'anchor_boxes': input_anchor.multilevel_boxes,
        'image_info': image_info,
    }
    if self._mode == ModeKeys.PREDICT_WITH_GT:
      # Converts boxes from normalized coordinates to pixel coordinates.
      groundtruths = {
          'source_id': data['source_id'],
          'height': data['height'],
          'width': data['width'],
          'num_detections': tf.shape(data['groundtruth_classes']),
          'boxes': box_utils.denormalize_boxes(
              data['groundtruth_boxes'], image_shape),
          'classes': data['groundtruth_classes'],
          # 'masks': tf.squeeze(masks, axis=-1),
          'areas': data['groundtruth_area'],
          'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32),
      }
      groundtruths['source_id'] = dataloader_utils.process_source_id(
          groundtruths['source_id'])
      groundtruths = dataloader_utils.pad_groundtruths_to_fixed_size(
          groundtruths, self._max_num_instances)
      # Computes training labels.
      (cls_targets,
       box_targets,
       num_positives) = anchor_labeler.label_anchors(
           boxes,
           tf.cast(tf.expand_dims(classes, axis=1), tf.float32))
      # Packs labels for model_fn outputs.
      labels.update({
          'cls_targets': cls_targets,
          'box_targets': box_targets,
          'num_positives': num_positives,
          'groundtruths': groundtruths,
      })

    inputs = {
        'image': image,
        'image_info': image_info,
    }

    return inputs, labels