Spaces:
Runtime error
Runtime error
File size: 22,341 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Data parser and processing.
Parse image and ground truths in a dataset to training targets and package them
into (image, labels) tuple for ShapeMask.
Weicheng Kuo, Anelia Angelova, Jitendra Malik, Tsung-Yi Lin
ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors.
arXiv:1904.03239.
"""
import tensorflow as tf, tf_keras
from official.legacy.detection.dataloader import anchor
from official.legacy.detection.dataloader import mode_keys as ModeKeys
from official.legacy.detection.dataloader import tf_example_decoder
from official.legacy.detection.utils import box_utils
from official.legacy.detection.utils import class_utils
from official.legacy.detection.utils import dataloader_utils
from official.legacy.detection.utils import input_utils
def pad_to_size(input_tensor, size):
"""Pads data with zeros to a given length at the first dimension if needed.
Args:
input_tensor: `Tensor` with any dimension.
size: `int` number for the first dimension of output Tensor.
Returns:
`Tensor` with the first dimension padded to `size` if the first diemsion
is less than `size`, otherwise no padding.
"""
input_shape = tf.shape(input_tensor)
padding_shape = []
# Computes the padding length on the first dimension.
padding_length = tf.maximum(0, size - tf.shape(input_tensor)[0])
assert_length = tf.Assert(
tf.greater_equal(padding_length, 0), [padding_length])
with tf.control_dependencies([assert_length]):
padding_shape.append(padding_length)
# Copies shapes of the rest of input shape dimensions.
for i in range(1, len(input_shape)):
padding_shape.append(tf.shape(input=input_tensor)[i])
# Pads input tensor to the fixed first dimension.
paddings = tf.cast(tf.zeros(padding_shape), input_tensor.dtype)
padded_tensor = tf.concat([input_tensor, paddings], axis=0)
return padded_tensor
class Parser(object):
"""ShapeMask Parser to parse an image and its annotations into a dictionary of tensors."""
def __init__(self,
output_size,
min_level,
max_level,
num_scales,
aspect_ratios,
anchor_size,
use_category=True,
outer_box_scale=1.0,
box_jitter_scale=0.025,
num_sampled_masks=8,
mask_crop_size=32,
mask_min_level=3,
mask_max_level=5,
upsample_factor=4,
match_threshold=0.5,
unmatched_threshold=0.5,
aug_rand_hflip=False,
aug_scale_min=1.0,
aug_scale_max=1.0,
skip_crowd_during_training=True,
max_num_instances=100,
use_bfloat16=True,
mask_train_class='all',
mode=None):
"""Initializes parameters for parsing annotations in the dataset.
Args:
output_size: `Tensor` or `list` for [height, width] of output image. The
output_size should be divided by the largest feature stride 2^max_level.
min_level: `int` number of minimum level of the output feature pyramid.
max_level: `int` number of maximum level of the output feature pyramid.
num_scales: `int` number representing intermediate scales added
on each level. For instances, num_scales=2 adds one additional
intermediate anchor scales [2^0, 2^0.5] on each level.
aspect_ratios: `list` of float numbers representing the aspect raito
anchors added on each level. The number indicates the ratio of width to
height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
on each scale level.
anchor_size: `float` number representing the scale of size of the base
anchor to the feature stride 2^level.
use_category: if `False`, treat all object in all classes in one
foreground category.
outer_box_scale: `float` number in a range of [1.0, inf) representing
the scale from object box to outer box. The mask branch predicts
instance mask enclosed in outer box.
box_jitter_scale: `float` number representing the noise magnitude to
jitter the training groundtruth boxes for mask branch.
num_sampled_masks: `int` number of sampled masks for training.
mask_crop_size: `list` for [height, width] of output training masks.
mask_min_level: `int` number indicating the minimum feature level to
obtain instance features.
mask_max_level: `int` number indicating the maximum feature level to
obtain instance features.
upsample_factor: `int` factor of upsampling the fine mask predictions.
match_threshold: `float` number between 0 and 1 representing the
lower-bound threshold to assign positive labels for anchors. An anchor
with a score over the threshold is labeled positive.
unmatched_threshold: `float` number between 0 and 1 representing the
upper-bound threshold to assign negative labels for anchors. An anchor
with a score below the threshold is labeled negative.
aug_rand_hflip: `bool`, if True, augment training with random
horizontal flip.
aug_scale_min: `float`, the minimum scale applied to `output_size` for
data augmentation during training.
aug_scale_max: `float`, the maximum scale applied to `output_size` for
data augmentation during training.
skip_crowd_during_training: `bool`, if True, skip annotations labeled with
`is_crowd` equals to 1.
max_num_instances: `int` number of maximum number of instances in an
image. The groundtruth data will be padded to `max_num_instances`.
use_bfloat16: `bool`, if True, cast output image to tf.bfloat16.
mask_train_class: a string of experiment mode: `all`, `voc` or `nonvoc`.
mode: a ModeKeys. Specifies if this is training, evaluation, prediction
or prediction with groundtruths in the outputs.
"""
self._mode = mode
self._mask_train_class = mask_train_class
self._max_num_instances = max_num_instances
self._skip_crowd_during_training = skip_crowd_during_training
self._is_training = (mode == ModeKeys.TRAIN)
self._example_decoder = tf_example_decoder.TfExampleDecoder(
include_mask=True)
# Anchor.
self._output_size = output_size
self._min_level = min_level
self._max_level = max_level
self._num_scales = num_scales
self._aspect_ratios = aspect_ratios
self._anchor_size = anchor_size
self._match_threshold = match_threshold
self._unmatched_threshold = unmatched_threshold
# Data augmentation.
self._aug_rand_hflip = aug_rand_hflip
self._aug_scale_min = aug_scale_min
self._aug_scale_max = aug_scale_max
# Device.
self._use_bfloat16 = use_bfloat16
# ShapeMask specific.
# Control of which category to use.
self._use_category = use_category
self._num_sampled_masks = num_sampled_masks
self._mask_crop_size = mask_crop_size
self._mask_min_level = mask_min_level
self._mask_max_level = mask_max_level
self._outer_box_scale = outer_box_scale
self._box_jitter_scale = box_jitter_scale
self._up_sample_factor = upsample_factor
# Data is parsed depending on the model Modekey.
if mode == ModeKeys.TRAIN:
self._parse_fn = self._parse_train_data
elif mode == ModeKeys.EVAL:
self._parse_fn = self._parse_eval_data
elif mode == ModeKeys.PREDICT or mode == ModeKeys.PREDICT_WITH_GT:
self._parse_fn = self._parse_predict_data
else:
raise ValueError('mode is not defined.')
def __call__(self, value):
"""Parses data to an image and associated training labels.
Args:
value: a string tensor holding a serialized tf.Example proto.
Returns:
inputs:
image: image tensor that is preproessed to have normalized value and
dimension [output_size[0], output_size[1], 3]
mask_boxes: sampled boxes that tightly enclose the training masks. The
box is represented in [y1, x1, y2, x2] format. The tensor is sampled
to the fixed dimension [self._num_sampled_masks, 4].
mask_outer_boxes: loose box that enclose sampled tight box. The
box is represented in [y1, x1, y2, x2] format. The tensor is sampled
to the fixed dimension [self._num_sampled_masks, 4].
mask_classes: the class ids of sampled training masks. The tensor has
shape [self._num_sampled_masks].
labels:
cls_targets: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, anchors_per_location]. The height_l and
width_l represent the dimension of class logits at l-th level.
box_targets: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, anchors_per_location * 4]. The height_l and
width_l represent the dimension of bounding box regression output at
l-th level.
num_positives: number of positive anchors in the image.
anchor_boxes: ordered dictionary with keys
[min_level, min_level+1, ..., max_level]. The values are tensor with
shape [height_l, width_l, 4] representing anchor boxes at each level.
image_scale: 2D float `Tensor` representing scale factors that apply
to [height, width] of input image.
mask_targets: training binary mask targets. The tensor has shape
[self._num_sampled_masks, self._mask_crop_size, self._mask_crop_size].
mask_is_valid: the binary tensor to indicate if the sampled masks are
valide. The sampled masks are invalid when no mask annotations are
included in the image. The tensor has shape [1].
groundtruths:
source_id: source image id. Default value -1 if the source id is empty
in the groundtruth annotation.
boxes: groundtruth bounding box annotations. The box is represented in
[y1, x1, y2, x2] format. The tensor is padded with -1 to the fixed
dimension [self._max_num_instances, 4].
classes: groundtruth classes annotations. The tensor is padded with
-1 to the fixed dimension [self._max_num_instances].
areas: groundtruth areas annotations. The tensor is padded with -1
to the fixed dimension [self._max_num_instances].
is_crowds: groundtruth annotations to indicate if an annotation
represents a group of instances by value {0, 1}. The tensor is
padded with 0 to the fixed dimension [self._max_num_instances].
"""
with tf.name_scope('parser'):
data = self._example_decoder.decode(value)
return self._parse_fn(data)
def _parse_train_data(self, data):
"""Parse data for ShapeMask training."""
classes = data['groundtruth_classes']
boxes = data['groundtruth_boxes']
masks = data['groundtruth_instance_masks']
is_crowds = data['groundtruth_is_crowd']
# Skips annotations with `is_crowd` = True.
if self._skip_crowd_during_training and self._is_training:
num_groundtrtuhs = tf.shape(classes)[0]
with tf.control_dependencies([num_groundtrtuhs, is_crowds]):
indices = tf.cond(
tf.greater(tf.size(is_crowds), 0),
lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64))
classes = tf.gather(classes, indices)
boxes = tf.gather(boxes, indices)
masks = tf.gather(masks, indices)
# Gets original image and its size.
image = data['image']
image_shape = tf.shape(image)[0:2]
# If not using category, makes all categories with id = 0.
if not self._use_category:
classes = tf.cast(tf.greater(classes, 0), dtype=tf.float32)
# Normalizes image with mean and std pixel values.
image = input_utils.normalize_image(image)
# Flips image randomly during training.
if self._aug_rand_hflip:
image, boxes, masks = input_utils.random_horizontal_flip(
image, boxes, masks)
# Converts boxes from normalized coordinates to pixel coordinates.
boxes = box_utils.denormalize_boxes(boxes, image_shape)
# Resizes and crops image.
image, image_info = input_utils.resize_and_crop_image(
image,
self._output_size,
self._output_size,
aug_scale_min=self._aug_scale_min,
aug_scale_max=self._aug_scale_max)
image_scale = image_info[2, :]
offset = image_info[3, :]
# Resizes and crops boxes and masks.
boxes = input_utils.resize_and_crop_boxes(
boxes, image_scale, image_info[1, :], offset)
# Filters out ground truth boxes that are all zeros.
indices = box_utils.get_non_empty_box_indices(boxes)
boxes = tf.gather(boxes, indices)
classes = tf.gather(classes, indices)
masks = tf.gather(masks, indices)
# Assigns anchors.
input_anchor = anchor.Anchor(
self._min_level, self._max_level, self._num_scales,
self._aspect_ratios, self._anchor_size, self._output_size)
anchor_labeler = anchor.AnchorLabeler(
input_anchor, self._match_threshold, self._unmatched_threshold)
(cls_targets,
box_targets,
num_positives) = anchor_labeler.label_anchors(
boxes,
tf.cast(tf.expand_dims(classes, axis=1), tf.float32))
# Sample groundtruth masks/boxes/classes for mask branch.
num_masks = tf.shape(masks)[0]
mask_shape = tf.shape(masks)[1:3]
# Pad sampled boxes/masks/classes to a constant batch size.
padded_boxes = pad_to_size(boxes, self._num_sampled_masks)
padded_classes = pad_to_size(classes, self._num_sampled_masks)
padded_masks = pad_to_size(masks, self._num_sampled_masks)
# Randomly sample groundtruth masks for mask branch training. For the image
# without groundtruth masks, it will sample the dummy padded tensors.
rand_indices = tf.random.shuffle(
tf.range(tf.maximum(num_masks, self._num_sampled_masks)))
rand_indices = tf.math.mod(rand_indices, tf.maximum(num_masks, 1))
rand_indices = rand_indices[0:self._num_sampled_masks]
rand_indices = tf.reshape(rand_indices, [self._num_sampled_masks])
sampled_boxes = tf.gather(padded_boxes, rand_indices)
sampled_classes = tf.gather(padded_classes, rand_indices)
sampled_masks = tf.gather(padded_masks, rand_indices)
# Jitter the sampled boxes to mimic the noisy detections.
sampled_boxes = box_utils.jitter_boxes(
sampled_boxes, noise_scale=self._box_jitter_scale)
sampled_boxes = box_utils.clip_boxes(sampled_boxes, self._output_size)
# Compute mask targets in feature crop. A feature crop fully contains a
# sampled box.
mask_outer_boxes = box_utils.compute_outer_boxes(
sampled_boxes, tf.shape(image)[0:2], scale=self._outer_box_scale)
mask_outer_boxes = box_utils.clip_boxes(mask_outer_boxes, self._output_size)
# Compensate the offset of mask_outer_boxes to map it back to original image
# scale.
mask_outer_boxes_ori = mask_outer_boxes
mask_outer_boxes_ori += tf.tile(tf.expand_dims(offset, axis=0), [1, 2])
mask_outer_boxes_ori /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2])
norm_mask_outer_boxes_ori = box_utils.normalize_boxes(
mask_outer_boxes_ori, mask_shape)
# Set sampled_masks shape to [batch_size, height, width, 1].
sampled_masks = tf.cast(tf.expand_dims(sampled_masks, axis=-1), tf.float32)
mask_targets = tf.image.crop_and_resize(
sampled_masks,
norm_mask_outer_boxes_ori,
box_indices=tf.range(self._num_sampled_masks),
crop_size=[self._mask_crop_size, self._mask_crop_size],
method='bilinear',
extrapolation_value=0,
name='train_mask_targets')
mask_targets = tf.where(tf.greater_equal(mask_targets, 0.5),
tf.ones_like(mask_targets),
tf.zeros_like(mask_targets))
mask_targets = tf.squeeze(mask_targets, axis=-1)
if self._up_sample_factor > 1:
fine_mask_targets = tf.image.crop_and_resize(
sampled_masks,
norm_mask_outer_boxes_ori,
box_indices=tf.range(self._num_sampled_masks),
crop_size=[
self._mask_crop_size * self._up_sample_factor,
self._mask_crop_size * self._up_sample_factor
],
method='bilinear',
extrapolation_value=0,
name='train_mask_targets')
fine_mask_targets = tf.where(
tf.greater_equal(fine_mask_targets, 0.5),
tf.ones_like(fine_mask_targets), tf.zeros_like(fine_mask_targets))
fine_mask_targets = tf.squeeze(fine_mask_targets, axis=-1)
else:
fine_mask_targets = mask_targets
# If bfloat16 is used, casts input image to tf.bfloat16.
if self._use_bfloat16:
image = tf.cast(image, dtype=tf.bfloat16)
valid_image = tf.cast(tf.not_equal(num_masks, 0), tf.int32)
if self._mask_train_class == 'all':
mask_is_valid = valid_image * tf.ones_like(sampled_classes, tf.int32)
else:
# Get the intersection of sampled classes with training splits.
mask_valid_classes = tf.cast(
tf.expand_dims(
class_utils.coco_split_class_ids(self._mask_train_class), 1),
sampled_classes.dtype)
match = tf.reduce_any(
tf.equal(tf.expand_dims(sampled_classes, 0), mask_valid_classes), 0)
mask_is_valid = valid_image * tf.cast(match, tf.int32)
# Packs labels for model_fn outputs.
labels = {
'cls_targets': cls_targets,
'box_targets': box_targets,
'anchor_boxes': input_anchor.multilevel_boxes,
'num_positives': num_positives,
'image_info': image_info,
# For ShapeMask.
'mask_targets': mask_targets,
'fine_mask_targets': fine_mask_targets,
'mask_is_valid': mask_is_valid,
}
inputs = {
'image': image,
'image_info': image_info,
'mask_boxes': sampled_boxes,
'mask_outer_boxes': mask_outer_boxes,
'mask_classes': sampled_classes,
}
return inputs, labels
def _parse_predict_data(self, data):
"""Parse data for ShapeMask training."""
classes = data['groundtruth_classes']
boxes = data['groundtruth_boxes']
masks = data['groundtruth_instance_masks']
# Gets original image and its size.
image = data['image']
image_shape = tf.shape(image)[0:2]
# If not using category, makes all categories with id = 0.
if not self._use_category:
classes = tf.cast(tf.greater(classes, 0), dtype=tf.float32)
# Normalizes image with mean and std pixel values.
image = input_utils.normalize_image(image)
# Converts boxes from normalized coordinates to pixel coordinates.
boxes = box_utils.denormalize_boxes(boxes, image_shape)
# Resizes and crops image.
image, image_info = input_utils.resize_and_crop_image(
image,
self._output_size,
self._output_size,
aug_scale_min=1.0,
aug_scale_max=1.0)
image_scale = image_info[2, :]
offset = image_info[3, :]
# Resizes and crops boxes and masks.
boxes = input_utils.resize_and_crop_boxes(
boxes, image_scale, image_info[1, :], offset)
masks = input_utils.resize_and_crop_masks(
tf.expand_dims(masks, axis=-1), image_scale, self._output_size, offset)
# Filters out ground truth boxes that are all zeros.
indices = box_utils.get_non_empty_box_indices(boxes)
boxes = tf.gather(boxes, indices)
classes = tf.gather(classes, indices)
# Assigns anchors.
input_anchor = anchor.Anchor(
self._min_level, self._max_level, self._num_scales,
self._aspect_ratios, self._anchor_size, self._output_size)
anchor_labeler = anchor.AnchorLabeler(
input_anchor, self._match_threshold, self._unmatched_threshold)
# If bfloat16 is used, casts input image to tf.bfloat16.
if self._use_bfloat16:
image = tf.cast(image, dtype=tf.bfloat16)
labels = {
'anchor_boxes': input_anchor.multilevel_boxes,
'image_info': image_info,
}
if self._mode == ModeKeys.PREDICT_WITH_GT:
# Converts boxes from normalized coordinates to pixel coordinates.
groundtruths = {
'source_id': data['source_id'],
'height': data['height'],
'width': data['width'],
'num_detections': tf.shape(data['groundtruth_classes']),
'boxes': box_utils.denormalize_boxes(
data['groundtruth_boxes'], image_shape),
'classes': data['groundtruth_classes'],
# 'masks': tf.squeeze(masks, axis=-1),
'areas': data['groundtruth_area'],
'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32),
}
groundtruths['source_id'] = dataloader_utils.process_source_id(
groundtruths['source_id'])
groundtruths = dataloader_utils.pad_groundtruths_to_fixed_size(
groundtruths, self._max_num_instances)
# Computes training labels.
(cls_targets,
box_targets,
num_positives) = anchor_labeler.label_anchors(
boxes,
tf.cast(tf.expand_dims(classes, axis=1), tf.float32))
# Packs labels for model_fn outputs.
labels.update({
'cls_targets': cls_targets,
'box_targets': box_targets,
'num_positives': num_positives,
'groundtruths': groundtruths,
})
inputs = {
'image': image,
'image_info': image_info,
}
return inputs, labels
|