File size: 6,961 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Translate text or files using trained transformer model."""

# Import libraries
from absl import logging
import numpy as np
import tensorflow as tf, tf_keras

from official.legacy.transformer.utils import tokenizer

_EXTRA_DECODE_LENGTH = 100
_BEAM_SIZE = 4
_ALPHA = 0.6


def _get_sorted_inputs(filename):
  """Read and sort lines from the file sorted by decreasing length.

  Args:
    filename: String name of file to read inputs from.
  Returns:
    Sorted list of inputs, and dictionary mapping original index->sorted index
    of each element.
  """
  with tf.io.gfile.GFile(filename) as f:
    records = f.read().split("\n")
    inputs = [record.strip() for record in records]
    if not inputs[-1]:
      inputs.pop()

  input_lens = [(i, len(line.split())) for i, line in enumerate(inputs)]
  sorted_input_lens = sorted(input_lens, key=lambda x: x[1], reverse=True)

  sorted_inputs = [None] * len(sorted_input_lens)
  sorted_keys = [0] * len(sorted_input_lens)
  for i, (index, _) in enumerate(sorted_input_lens):
    sorted_inputs[i] = inputs[index]
    sorted_keys[index] = i
  return sorted_inputs, sorted_keys


def _encode_and_add_eos(line, subtokenizer):
  """Encode line with subtokenizer, and add EOS id to the end."""
  return subtokenizer.encode(line) + [tokenizer.EOS_ID]


def _trim_and_decode(ids, subtokenizer):
  """Trim EOS and PAD tokens from ids, and decode to return a string."""
  try:
    index = list(ids).index(tokenizer.EOS_ID)
    return subtokenizer.decode(ids[:index])
  except ValueError:  # No EOS found in sequence
    return subtokenizer.decode(ids)


def translate_file(model,
                   params,
                   subtokenizer,
                   input_file,
                   output_file=None,
                   print_all_translations=True,
                   distribution_strategy=None):
  """Translate lines in file, and save to output file if specified.

  Args:
    model: A Keras model, used to generate the translations.
    params: A dictionary, containing the translation related parameters.
    subtokenizer: A subtokenizer object, used for encoding and decoding source
      and translated lines.
    input_file: A file containing lines to translate.
    output_file: A file that stores the generated translations.
    print_all_translations: A bool. If true, all translations are printed to
      stdout.
    distribution_strategy: A distribution strategy, used to perform inference
      directly with tf.function instead of Keras model.predict().

  Raises:
    ValueError: if output file is invalid.
  """
  batch_size = params["decode_batch_size"]

  # Read and sort inputs by length. Keep dictionary (original index-->new index
  # in sorted list) to write translations in the original order.
  sorted_inputs, sorted_keys = _get_sorted_inputs(input_file)
  total_samples = len(sorted_inputs)
  num_decode_batches = (total_samples - 1) // batch_size + 1

  def input_generator():
    """Yield encoded strings from sorted_inputs."""
    for i in range(num_decode_batches):
      lines = [
          sorted_inputs[j + i * batch_size]
          for j in range(batch_size)
          if j + i * batch_size < total_samples
      ]
      lines = [_encode_and_add_eos(l, subtokenizer) for l in lines]
      if distribution_strategy:
        for j in range(batch_size - len(lines)):
          lines.append([tokenizer.EOS_ID])
      batch = tf_keras.preprocessing.sequence.pad_sequences(
          lines,
          maxlen=params["decode_max_length"],
          dtype="int32",
          padding="post")
      logging.info("Decoding batch %d out of %d.", i, num_decode_batches)
      yield batch

  @tf.function
  def predict_step(inputs):
    """Decoding step function for TPU runs."""

    def _step_fn(inputs):
      """Per replica step function."""
      tag = inputs[0]
      val_inputs = inputs[1]
      val_outputs, _ = model([val_inputs], training=False)
      return tag, val_outputs

    return distribution_strategy.run(_step_fn, args=(inputs,))

  translations = []
  if distribution_strategy:
    num_replicas = distribution_strategy.num_replicas_in_sync
    local_batch_size = params["decode_batch_size"] // num_replicas
  for i, text in enumerate(input_generator()):
    if distribution_strategy:
      text = np.reshape(text, [num_replicas, local_batch_size, -1])
      # Add tag to the input of each replica with the reordering logic after
      # outputs, to ensure the output order matches the input order.
      text = tf.constant(text)

      @tf.function
      def text_as_per_replica():
        replica_context = tf.distribute.get_replica_context()
        replica_id = replica_context.replica_id_in_sync_group
        return replica_id, text[replica_id]  # pylint: disable=cell-var-from-loop

      text = distribution_strategy.run(text_as_per_replica)
      outputs = distribution_strategy.experimental_local_results(
          predict_step(text))
      val_outputs = [output for _, output in outputs]

      val_outputs = np.reshape(val_outputs, [params["decode_batch_size"], -1])
    else:
      val_outputs, _ = model.predict(text)

    length = len(val_outputs)
    for j in range(length):
      if j + i * batch_size < total_samples:
        translation = _trim_and_decode(val_outputs[j], subtokenizer)
        translations.append(translation)
        if print_all_translations:
          logging.info("Translating:\n\tInput: %s\n\tOutput: %s",
                       sorted_inputs[j + i * batch_size], translation)

  # Write translations in the order they appeared in the original file.
  if output_file is not None:
    if tf.io.gfile.isdir(output_file):
      raise ValueError("File output is a directory, will not save outputs to "
                       "file.")
    logging.info("Writing to file %s", output_file)
    with tf.io.gfile.GFile(output_file, "w") as f:
      for i in sorted_keys:
        f.write("%s\n" % translations[i])


def translate_from_text(model, subtokenizer, txt):
  encoded_txt = _encode_and_add_eos(txt, subtokenizer)
  result = model.predict(encoded_txt)
  outputs = result["outputs"]
  logging.info("Original: \"%s\"", txt)
  translate_from_input(outputs, subtokenizer)


def translate_from_input(outputs, subtokenizer):
  translation = _trim_and_decode(outputs, subtokenizer)
  logging.info("Translation: \"%s\"", translation)