File size: 10,356 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Misc for Transformer."""

# pylint: disable=g-bad-import-order

from absl import flags
import tensorflow as tf, tf_keras

from official.legacy.transformer import model_params
from official.utils.flags import core as flags_core
from official.utils.misc import keras_utils

FLAGS = flags.FLAGS

PARAMS_MAP = {
    'tiny': model_params.TINY_PARAMS,
    'base': model_params.BASE_PARAMS,
    'big': model_params.BIG_PARAMS,
}


def get_model_params(param_set, num_gpus):
  """Gets predefined model params."""
  if num_gpus > 1:
    if param_set == 'big':
      return model_params.BIG_MULTI_GPU_PARAMS.copy()
    elif param_set == 'base':
      return model_params.BASE_MULTI_GPU_PARAMS.copy()
    else:
      raise ValueError('Not valid params: param_set={} num_gpus={}'.format(
          param_set, num_gpus))

  return PARAMS_MAP[param_set].copy()


def define_transformer_flags():
  """Add flags and flag validators for running transformer_main."""
  # Add common flags (data_dir, model_dir, etc.).
  flags_core.define_base(num_gpu=True, distribution_strategy=True)
  flags_core.define_performance(
      num_parallel_calls=True,
      inter_op=False,
      intra_op=False,
      synthetic_data=True,
      max_train_steps=False,
      dtype=True,
      loss_scale=True,
      all_reduce_alg=True,
      num_packs=True,
      tf_gpu_thread_mode=True,
      datasets_num_private_threads=True,
      enable_xla=True,
      fp16_implementation=True)

  flags_core.define_benchmark()
  flags_core.define_device(tpu=True)

  flags.DEFINE_integer(
      name='train_steps',
      short_name='ts',
      default=300000,
      help=flags_core.help_wrap('The number of steps used to train.'))
  flags.DEFINE_integer(
      name='steps_between_evals',
      short_name='sbe',
      default=5000,
      help=flags_core.help_wrap(
          'The Number of training steps to run between evaluations. This is '
          'used if --train_steps is defined.'))
  flags.DEFINE_boolean(
      name='enable_time_history',
      default=True,
      help='Whether to enable TimeHistory callback.')
  flags.DEFINE_boolean(
      name='enable_tensorboard',
      default=False,
      help='Whether to enable Tensorboard callback.')
  flags.DEFINE_boolean(
      name='enable_metrics_in_training',
      default=False,
      help='Whether to enable metrics during training.')
  flags.DEFINE_boolean(
      name='enable_mlir_bridge',
      default=False,
      help='Whether to enable the TF to XLA bridge.')
  # Set flags from the flags_core module as 'key flags' so they're listed when
  # the '-h' flag is used. Without this line, the flags defined above are
  # only shown in the full `--helpful` help text.
  flags.adopt_module_key_flags(flags_core)

  # Add transformer-specific flags
  flags.DEFINE_enum(
      name='param_set',
      short_name='mp',
      default='big',
      enum_values=PARAMS_MAP.keys(),
      help=flags_core.help_wrap(
          'Parameter set to use when creating and training the model. The '
          'parameters define the input shape (batch size and max length), '
          'model configuration (size of embedding, # of hidden layers, etc.), '
          'and various other settings. The big parameter set increases the '
          'default batch size, embedding/hidden size, and filter size. For a '
          'complete list of parameters, please see model/model_params.py.'))

  flags.DEFINE_bool(
      name='static_batch',
      short_name='sb',
      default=False,
      help=flags_core.help_wrap(
          'Whether the batches in the dataset should have static shapes. In '
          'general, this setting should be False. Dynamic shapes allow the '
          'inputs to be grouped so that the number of padding tokens is '
          'minimized, and helps model training. In cases where the input shape '
          'must be static (e.g. running on TPU), this setting will be ignored '
          'and static batching will always be used.'))
  flags.DEFINE_integer(
      name='max_length',
      short_name='ml',
      default=256,
      help=flags_core.help_wrap(
          'Max sentence length for Transformer. Default is 256. Note: Usually '
          'it is more effective to use a smaller max length if static_batch is '
          'enabled, e.g. 64.'))

  # Flags for training with steps (may be used for debugging)
  flags.DEFINE_integer(
      name='validation_steps',
      short_name='vs',
      default=64,
      help=flags_core.help_wrap('The number of steps used in validation.'))

  # BLEU score computation
  flags.DEFINE_string(
      name='bleu_source',
      short_name='bls',
      default=None,
      help=flags_core.help_wrap(
          'Path to source file containing text translate when calculating the '
          'official BLEU score. Both --bleu_source and --bleu_ref must be set. '
      ))
  flags.DEFINE_string(
      name='bleu_ref',
      short_name='blr',
      default=None,
      help=flags_core.help_wrap(
          'Path to source file containing text translate when calculating the '
          'official BLEU score. Both --bleu_source and --bleu_ref must be set. '
      ))
  flags.DEFINE_string(
      name='vocab_file',
      short_name='vf',
      default=None,
      help=flags_core.help_wrap(
          'Path to subtoken vocabulary file. If data_download.py was used to '
          'download and encode the training data, look in the data_dir to find '
          'the vocab file.'))
  flags.DEFINE_string(
      name='mode',
      default='train',
      help=flags_core.help_wrap('mode: train, eval, or predict'))
  flags.DEFINE_bool(
      name='use_ctl',
      default=False,
      help=flags_core.help_wrap(
          'Whether the model runs with custom training loop.'))
  flags.DEFINE_integer(
      name='decode_batch_size',
      default=32,
      help=flags_core.help_wrap(
          'Global batch size used for Transformer autoregressive decoding on '
          'TPU.'))
  flags.DEFINE_integer(
      name='decode_max_length',
      default=97,
      help=flags_core.help_wrap(
          'Max sequence length of the decode/eval data. This is used by '
          'Transformer autoregressive decoding on TPU to have minimum '
          'paddings.'))
  flags.DEFINE_bool(
      name='padded_decode',
      default=False,
      help=flags_core.help_wrap(
          'Whether the autoregressive decoding runs with input data padded to '
          'the decode_max_length. For TPU/XLA-GPU runs, this flag has to be '
          'set due the static shape requirement. Although CPU/GPU could also '
          'use padded_decode, it has not been tested. In addition, this method '
          'will introduce unnecessary overheads which grow quadratically with '
          'the max sequence length.'))
  flags.DEFINE_bool(
      name='enable_checkpointing',
      default=True,
      help=flags_core.help_wrap(
          'Whether to do checkpointing during training. When running under '
          'benchmark harness, we will avoid checkpointing.'))
  flags.DEFINE_bool(
      name='save_weights_only',
      default=True,
      help=flags_core.help_wrap(
          'Only used when above `enable_checkpointing` is True. '
          'If True, then only the model\'s weights will be saved '
          '(`model.save_weights(filepath)`), else the full model is saved '
          '(`model.save(filepath)`)'))

  flags_core.set_defaults(
      data_dir='/tmp/translate_ende',
      model_dir='/tmp/transformer_model',
      batch_size=None)

  # pylint: disable=unused-variable
  @flags.multi_flags_validator(
      ['bleu_source', 'bleu_ref'],
      message='Both or neither --bleu_source and --bleu_ref must be defined.')
  def _check_bleu_files(flags_dict):
    return (flags_dict['bleu_source'] is None) == (
        flags_dict['bleu_ref'] is None)

  @flags.multi_flags_validator(
      ['bleu_source', 'bleu_ref', 'vocab_file'],
      message='--vocab_file must be defined if --bleu_source and --bleu_ref '
      'are defined.')
  def _check_bleu_vocab_file(flags_dict):
    if flags_dict['bleu_source'] and flags_dict['bleu_ref']:
      return flags_dict['vocab_file'] is not None
    return True

  # pylint: enable=unused-variable


def get_callbacks():
  """Returns common callbacks."""
  callbacks = []
  if FLAGS.enable_time_history:
    time_callback = keras_utils.TimeHistory(
        FLAGS.batch_size,
        FLAGS.log_steps,
        logdir=FLAGS.model_dir if FLAGS.enable_tensorboard else None)
    callbacks.append(time_callback)

  if FLAGS.enable_tensorboard:
    tensorboard_callback = tf_keras.callbacks.TensorBoard(
        log_dir=FLAGS.model_dir)
    callbacks.append(tensorboard_callback)

  return callbacks


def update_stats(history, stats, callbacks):
  """Normalizes and updates dictionary of stats.

  Args:
    history: Results of the training step.
    stats: Dict with pre-existing training stats.
    callbacks: a list of callbacks which might include a time history callback
      used during keras.fit.
  """

  if history and history.history:
    train_hist = history.history
    # Gets final loss from training.
    stats['loss'] = float(train_hist['loss'][-1])

  if not callbacks:
    return

  # Look for the time history callback which was used during keras.fit
  for callback in callbacks:
    if isinstance(callback, keras_utils.TimeHistory):
      timestamp_log = callback.timestamp_log
      stats['step_timestamp_log'] = timestamp_log
      stats['train_finish_time'] = callback.train_finish_time
      if len(timestamp_log) > 1:
        stats['avg_exp_per_second'] = (
            callback.batch_size * callback.log_steps *
            (len(callback.timestamp_log) - 1) /
            (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))