File size: 20,743 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""R-CNN(-RS) models."""

from typing import Any, List, Mapping, Optional, Tuple, Union

import tensorflow as tf, tf_keras

from official.vision.ops import anchor
from official.vision.ops import box_ops


@tf_keras.utils.register_keras_serializable(package='Vision')
class MaskRCNNModel(tf_keras.Model):
  """The Mask R-CNN(-RS) and Cascade RCNN-RS models."""

  def __init__(self,
               backbone: tf_keras.Model,
               decoder: tf_keras.Model,
               rpn_head: tf_keras.layers.Layer,
               detection_head: Union[tf_keras.layers.Layer,
                                     List[tf_keras.layers.Layer]],
               roi_generator: tf_keras.layers.Layer,
               roi_sampler: Union[tf_keras.layers.Layer,
                                  List[tf_keras.layers.Layer]],
               roi_aligner: tf_keras.layers.Layer,
               detection_generator: tf_keras.layers.Layer,
               mask_head: Optional[tf_keras.layers.Layer] = None,
               mask_sampler: Optional[tf_keras.layers.Layer] = None,
               mask_roi_aligner: Optional[tf_keras.layers.Layer] = None,
               class_agnostic_bbox_pred: bool = False,
               cascade_class_ensemble: bool = False,
               min_level: Optional[int] = None,
               max_level: Optional[int] = None,
               num_scales: Optional[int] = None,
               aspect_ratios: Optional[List[float]] = None,
               anchor_size: Optional[float] = None,
               outer_boxes_scale: float = 1.0,
               **kwargs):
    """Initializes the R-CNN(-RS) model.

    Args:
      backbone: `tf_keras.Model`, the backbone network.
      decoder: `tf_keras.Model`, the decoder network.
      rpn_head: the RPN head.
      detection_head: the detection head or a list of heads.
      roi_generator: the ROI generator.
      roi_sampler: a single ROI sampler or a list of ROI samplers for cascade
        detection heads.
      roi_aligner: the ROI aligner.
      detection_generator: the detection generator.
      mask_head: the mask head.
      mask_sampler: the mask sampler.
      mask_roi_aligner: the ROI alginer for mask prediction.
      class_agnostic_bbox_pred: if True, perform class agnostic bounding box
        prediction. Needs to be `True` for Cascade RCNN models.
      cascade_class_ensemble: if True, ensemble classification scores over all
        detection heads.
      min_level: Minimum level in output feature maps.
      max_level: Maximum level in output feature maps.
      num_scales: A number representing intermediate scales added on each level.
        For instances, num_scales=2 adds one additional intermediate anchor
        scales [2^0, 2^0.5] on each level.
      aspect_ratios: A list representing the aspect raito anchors added on each
        level. The number indicates the ratio of width to height. For instances,
        aspect_ratios=[1.0, 2.0, 0.5] adds three anchors on each scale level.
      anchor_size: A number representing the scale of size of the base anchor to
        the feature stride 2^level.
      outer_boxes_scale: a float to scale up the bounding boxes to generate
        more inclusive masks. The scale is expected to be >=1.0.
      **kwargs: keyword arguments to be passed.
    """
    super().__init__(**kwargs)
    self._config_dict = {
        'backbone': backbone,
        'decoder': decoder,
        'rpn_head': rpn_head,
        'detection_head': detection_head,
        'roi_generator': roi_generator,
        'roi_sampler': roi_sampler,
        'roi_aligner': roi_aligner,
        'detection_generator': detection_generator,
        'outer_boxes_scale': outer_boxes_scale,
        'mask_head': mask_head,
        'mask_sampler': mask_sampler,
        'mask_roi_aligner': mask_roi_aligner,
        'class_agnostic_bbox_pred': class_agnostic_bbox_pred,
        'cascade_class_ensemble': cascade_class_ensemble,
        'min_level': min_level,
        'max_level': max_level,
        'num_scales': num_scales,
        'aspect_ratios': aspect_ratios,
        'anchor_size': anchor_size,
    }
    self.backbone = backbone
    self.decoder = decoder
    self.rpn_head = rpn_head
    if not isinstance(detection_head, (list, tuple)):
      self.detection_head = [detection_head]
    else:
      self.detection_head = detection_head
    self.roi_generator = roi_generator
    if not isinstance(roi_sampler, (list, tuple)):
      self.roi_sampler = [roi_sampler]
    else:
      self.roi_sampler = roi_sampler
    if len(self.roi_sampler) > 1 and not class_agnostic_bbox_pred:
      raise ValueError(
          '`class_agnostic_bbox_pred` needs to be True if multiple detection heads are specified.'
      )
    self.roi_aligner = roi_aligner
    self.detection_generator = detection_generator
    self._include_mask = mask_head is not None
    if outer_boxes_scale < 1.0:
      raise ValueError('`outer_boxes_scale` should be a value >= 1.0.')
    self.outer_boxes_scale = outer_boxes_scale
    self.mask_head = mask_head
    if self._include_mask and mask_sampler is None:
      raise ValueError('`mask_sampler` is not provided in Mask R-CNN.')
    self.mask_sampler = mask_sampler
    if self._include_mask and mask_roi_aligner is None:
      raise ValueError('`mask_roi_aligner` is not provided in Mask R-CNN.')
    self.mask_roi_aligner = mask_roi_aligner
    # Weights for the regression losses for each FRCNN layer.
    # TODO(jiageng): Make the weights configurable.
    self._cascade_layer_to_weights = [
        [10.0, 10.0, 5.0, 5.0],
        [20.0, 20.0, 10.0, 10.0],
        [30.0, 30.0, 15.0, 15.0],
    ]

  def call(  # pytype: disable=signature-mismatch  # overriding-parameter-count-checks
      self,
      images: tf.Tensor,
      image_shape: tf.Tensor,
      anchor_boxes: Optional[Mapping[str, tf.Tensor]] = None,
      gt_boxes: Optional[tf.Tensor] = None,
      gt_classes: Optional[tf.Tensor] = None,
      gt_masks: Optional[tf.Tensor] = None,
      gt_outer_boxes: Optional[tf.Tensor] = None,
      training: Optional[bool] = None) -> Mapping[str, Optional[tf.Tensor]]:
    call_box_outputs_kwargs = {
        'images': images,
        'image_shape': image_shape,
        'anchor_boxes': anchor_boxes,
        'gt_boxes': gt_boxes,
        'gt_classes': gt_classes,
        'training': training,
    }
    if self.outer_boxes_scale > 1.0:
      call_box_outputs_kwargs['gt_outer_boxes'] = gt_outer_boxes
    model_outputs, intermediate_outputs = self._call_box_outputs(
        **call_box_outputs_kwargs)
    if not self._include_mask:
      return model_outputs

    if self.outer_boxes_scale == 1.0:
      current_rois = intermediate_outputs['current_rois']
      matched_gt_boxes = intermediate_outputs['matched_gt_boxes']
    else:
      current_rois = box_ops.compute_outer_boxes(
          intermediate_outputs['current_rois'],
          tf.expand_dims(image_shape, axis=1), self.outer_boxes_scale)
      matched_gt_boxes = intermediate_outputs['matched_gt_outer_boxes']

    model_mask_outputs = self._call_mask_outputs(
        model_box_outputs=model_outputs,
        features=model_outputs['decoder_features'],
        current_rois=current_rois,
        matched_gt_indices=intermediate_outputs['matched_gt_indices'],
        matched_gt_boxes=matched_gt_boxes,
        matched_gt_classes=intermediate_outputs['matched_gt_classes'],
        gt_masks=gt_masks,
        training=training)
    model_outputs.update(model_mask_outputs)  # pytype: disable=attribute-error  # dynamic-method-lookup
    return model_outputs

  def _get_backbone_and_decoder_features(self, images):

    backbone_features = self.backbone(images)
    if self.decoder:
      features = self.decoder(backbone_features)
    else:
      features = backbone_features
    return backbone_features, features

  def _call_box_outputs(
      self,
      images: tf.Tensor,
      image_shape: tf.Tensor,
      anchor_boxes: Optional[Mapping[str, tf.Tensor]] = None,
      gt_boxes: Optional[tf.Tensor] = None,
      gt_classes: Optional[tf.Tensor] = None,
      training: Optional[bool] = None,
      gt_outer_boxes: Optional[tf.Tensor] = None,
  ) -> Tuple[Mapping[str, Any], Mapping[str, Any]]:
    """Implementation of the Faster-RCNN logic for boxes."""
    model_outputs = {}

    # Feature extraction.
    (backbone_features,
     decoder_features) = self._get_backbone_and_decoder_features(images)

    # Region proposal network.
    rpn_scores, rpn_boxes = self.rpn_head(decoder_features)

    model_outputs.update({
        'backbone_features': backbone_features,
        'decoder_features': decoder_features,
        'rpn_boxes': rpn_boxes,
        'rpn_scores': rpn_scores
    })

    # Generate anchor boxes for this batch if not provided.
    if anchor_boxes is None:
      _, image_height, image_width, _ = images.get_shape().as_list()
      anchor_boxes = anchor.Anchor(
          min_level=self._config_dict['min_level'],
          max_level=self._config_dict['max_level'],
          num_scales=self._config_dict['num_scales'],
          aspect_ratios=self._config_dict['aspect_ratios'],
          anchor_size=self._config_dict['anchor_size'],
          image_size=(image_height, image_width)).multilevel_boxes
      for l in anchor_boxes:
        anchor_boxes[l] = tf.tile(
            tf.expand_dims(anchor_boxes[l], axis=0),
            [tf.shape(images)[0], 1, 1, 1])

    # Generate RoIs.
    current_rois, _ = self.roi_generator(rpn_boxes, rpn_scores, anchor_boxes,
                                         image_shape, training)

    next_rois = current_rois
    all_class_outputs = []
    for cascade_num in range(len(self.roi_sampler)):
      # In cascade RCNN we want the higher layers to have different regression
      # weights as the predicted deltas become smaller and smaller.
      regression_weights = self._cascade_layer_to_weights[cascade_num]
      current_rois = next_rois

      if self.outer_boxes_scale == 1.0:
        (class_outputs, box_outputs, model_outputs, matched_gt_boxes,
         matched_gt_classes, matched_gt_indices,
         current_rois) = self._run_frcnn_head(
             features=decoder_features,
             rois=current_rois,
             gt_boxes=gt_boxes,
             gt_classes=gt_classes,
             training=training,
             model_outputs=model_outputs,
             cascade_num=cascade_num,
             regression_weights=regression_weights)
      else:
        (class_outputs, box_outputs, model_outputs,
         (matched_gt_boxes, matched_gt_outer_boxes), matched_gt_classes,
         matched_gt_indices, current_rois) = self._run_frcnn_head(
             features=decoder_features,
             rois=current_rois,
             gt_boxes=gt_boxes,
             gt_outer_boxes=gt_outer_boxes,
             gt_classes=gt_classes,
             training=training,
             model_outputs=model_outputs,
             cascade_num=cascade_num,
             regression_weights=regression_weights)
      all_class_outputs.append(class_outputs)

      # Generate ROIs for the next cascade head if there is any.
      if cascade_num < len(self.roi_sampler) - 1:
        next_rois = box_ops.decode_boxes(
            tf.cast(box_outputs, tf.float32),
            current_rois,
            weights=regression_weights)
        next_rois = box_ops.clip_boxes(next_rois,
                                       tf.expand_dims(image_shape, axis=1))

    if not training:
      if self._config_dict['cascade_class_ensemble']:
        class_outputs = tf.add_n(all_class_outputs) / len(all_class_outputs)

      detections = self.detection_generator(
          box_outputs,
          class_outputs,
          current_rois,
          image_shape,
          regression_weights,
          bbox_per_class=(not self._config_dict['class_agnostic_bbox_pred']))
      model_outputs.update({
          'cls_outputs': class_outputs,
          'box_outputs': box_outputs,
      })
      if self.detection_generator.get_config()['apply_nms']:
        model_outputs.update({
            'detection_boxes': detections['detection_boxes'],
            'detection_scores': detections['detection_scores'],
            'detection_classes': detections['detection_classes'],
            'num_detections': detections['num_detections']
        })
        if self.outer_boxes_scale > 1.0:
          detection_outer_boxes = box_ops.compute_outer_boxes(
              detections['detection_boxes'],
              tf.expand_dims(image_shape, axis=1), self.outer_boxes_scale)
          model_outputs['detection_outer_boxes'] = detection_outer_boxes
      else:
        model_outputs.update({
            'decoded_boxes': detections['decoded_boxes'],
            'decoded_box_scores': detections['decoded_box_scores']
        })

    intermediate_outputs = {
        'matched_gt_boxes': matched_gt_boxes,
        'matched_gt_indices': matched_gt_indices,
        'matched_gt_classes': matched_gt_classes,
        'current_rois': current_rois,
    }
    if self.outer_boxes_scale > 1.0:
      intermediate_outputs['matched_gt_outer_boxes'] = matched_gt_outer_boxes
    return (model_outputs, intermediate_outputs)

  def _call_mask_outputs(
      self,
      model_box_outputs: Mapping[str, tf.Tensor],
      features: tf.Tensor,
      current_rois: tf.Tensor,
      matched_gt_indices: tf.Tensor,
      matched_gt_boxes: tf.Tensor,
      matched_gt_classes: tf.Tensor,
      gt_masks: tf.Tensor,
      training: Optional[bool] = None) -> Mapping[str, tf.Tensor]:
    """Implementation of Mask-RCNN mask prediction logic."""

    model_outputs = dict(model_box_outputs)
    if training:
      current_rois, roi_classes, roi_masks = self.mask_sampler(
          current_rois, matched_gt_boxes, matched_gt_classes,
          matched_gt_indices, gt_masks)
      roi_masks = tf.stop_gradient(roi_masks)

      model_outputs.update({
          'mask_class_targets': roi_classes,
          'mask_targets': roi_masks,
      })
    else:
      if self.outer_boxes_scale == 1.0:
        current_rois = model_outputs['detection_boxes']
      else:
        current_rois = model_outputs['detection_outer_boxes']

      roi_classes = model_outputs['detection_classes']

    mask_logits, mask_probs = self._features_to_mask_outputs(
        features, current_rois, roi_classes)

    if training:
      model_outputs.update({
          'mask_outputs': mask_logits,
      })
    else:
      model_outputs.update({
          'detection_masks': mask_probs,
      })
    return model_outputs

  def _run_frcnn_head(self,
                      features,
                      rois,
                      gt_boxes,
                      gt_classes,
                      training,
                      model_outputs,
                      cascade_num,
                      regression_weights,
                      gt_outer_boxes=None):
    """Runs the frcnn head that does both class and box prediction.

    Args:
      features: `list` of features from the feature extractor.
      rois: `list` of current rois that will be used to predict bbox refinement
        and classes from.
      gt_boxes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES, 4].
        This tensor might have paddings with a negative value.
      gt_classes: [batch_size, MAX_INSTANCES] representing the groundtruth box
        classes. It is padded with -1s to indicate the invalid classes.
      training: `bool`, if model is training or being evaluated.
      model_outputs: `dict`, used for storing outputs used for eval and losses.
      cascade_num: `int`, the current frcnn layer in the cascade.
      regression_weights: `list`, weights used for l1 loss in bounding box
        regression.
      gt_outer_boxes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES,
        4]. This tensor might have paddings with a negative value. Default to
        None.

    Returns:
      class_outputs: Class predictions for rois.
      box_outputs: Box predictions for rois. These are formatted for the
        regression loss and need to be converted before being used as rois
        in the next stage.
      model_outputs: Updated dict with predictions used for losses and eval.
      matched_gt_boxes: If `is_training` is true, then these give the gt box
        location of its positive match.
      matched_gt_classes: If `is_training` is true, then these give the gt class
         of the predicted box.
      matched_gt_boxes: If `is_training` is true, then these give the box
        location of its positive match.
      matched_gt_outer_boxes: If `is_training` is true, then these give the
        outer box location of its positive match. Only exist if
        outer_boxes_scale is greater than 1.0.
      matched_gt_indices: If `is_training` is true, then gives the index of
        the positive box match. Used for mask prediction.
      rois: The sampled rois used for this layer.
    """
    # Only used during training.
    matched_gt_boxes, matched_gt_classes, matched_gt_indices = None, None, None
    if self.outer_boxes_scale > 1.0:
      matched_gt_outer_boxes = None

    if training and gt_boxes is not None:
      rois = tf.stop_gradient(rois)

      current_roi_sampler = self.roi_sampler[cascade_num]
      if self.outer_boxes_scale == 1.0:
        rois, matched_gt_boxes, matched_gt_classes, matched_gt_indices = (
            current_roi_sampler(rois, gt_boxes, gt_classes))
      else:
        (rois, matched_gt_boxes, matched_gt_outer_boxes, matched_gt_classes,
         matched_gt_indices) = current_roi_sampler(rois, gt_boxes, gt_classes,
                                                   gt_outer_boxes)
      # Create bounding box training targets.
      box_targets = box_ops.encode_boxes(
          matched_gt_boxes, rois, weights=regression_weights)
      # If the target is background, the box target is set to all 0s.
      box_targets = tf.where(
          tf.tile(
              tf.expand_dims(tf.equal(matched_gt_classes, 0), axis=-1),
              [1, 1, 4]), tf.zeros_like(box_targets), box_targets)
      model_outputs.update({
          'class_targets_{}'.format(cascade_num)
          if cascade_num else 'class_targets':
              matched_gt_classes,
          'box_targets_{}'.format(cascade_num)
          if cascade_num else 'box_targets':
              box_targets,
      })

    # Get roi features.
    roi_features = self.roi_aligner(features, rois)

    # Run frcnn head to get class and bbox predictions.
    current_detection_head = self.detection_head[cascade_num]
    class_outputs, box_outputs = current_detection_head(roi_features)

    model_outputs.update({
        'class_outputs_{}'.format(cascade_num)
        if cascade_num else 'class_outputs':
            class_outputs,
        'box_outputs_{}'.format(cascade_num) if cascade_num else 'box_outputs':
            box_outputs,
    })
    if self.outer_boxes_scale == 1.0:
      return (class_outputs, box_outputs, model_outputs, matched_gt_boxes,
              matched_gt_classes, matched_gt_indices, rois)
    else:
      return (class_outputs, box_outputs, model_outputs,
              (matched_gt_boxes, matched_gt_outer_boxes), matched_gt_classes,
              matched_gt_indices, rois)

  def _features_to_mask_outputs(self, features, rois, roi_classes):
    # Mask RoI align.
    mask_roi_features = self.mask_roi_aligner(features, rois)

    # Mask head.
    raw_masks = self.mask_head([mask_roi_features, roi_classes])

    return raw_masks, tf.nn.sigmoid(raw_masks)

  @property
  def checkpoint_items(
      self) -> Mapping[str, Union[tf_keras.Model, tf_keras.layers.Layer]]:
    """Returns a dictionary of items to be additionally checkpointed."""
    items = dict(
        backbone=self.backbone,
        rpn_head=self.rpn_head,
        detection_head=self.detection_head)
    if self.decoder is not None:
      items.update(decoder=self.decoder)
    if self._include_mask:
      items.update(mask_head=self.mask_head)

    return items

  def get_config(self) -> Mapping[str, Any]:
    return self._config_dict

  @classmethod
  def from_config(cls, config):
    return cls(**config)