Spaces:
Runtime error
Runtime error
File size: 20,743 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""R-CNN(-RS) models."""
from typing import Any, List, Mapping, Optional, Tuple, Union
import tensorflow as tf, tf_keras
from official.vision.ops import anchor
from official.vision.ops import box_ops
@tf_keras.utils.register_keras_serializable(package='Vision')
class MaskRCNNModel(tf_keras.Model):
"""The Mask R-CNN(-RS) and Cascade RCNN-RS models."""
def __init__(self,
backbone: tf_keras.Model,
decoder: tf_keras.Model,
rpn_head: tf_keras.layers.Layer,
detection_head: Union[tf_keras.layers.Layer,
List[tf_keras.layers.Layer]],
roi_generator: tf_keras.layers.Layer,
roi_sampler: Union[tf_keras.layers.Layer,
List[tf_keras.layers.Layer]],
roi_aligner: tf_keras.layers.Layer,
detection_generator: tf_keras.layers.Layer,
mask_head: Optional[tf_keras.layers.Layer] = None,
mask_sampler: Optional[tf_keras.layers.Layer] = None,
mask_roi_aligner: Optional[tf_keras.layers.Layer] = None,
class_agnostic_bbox_pred: bool = False,
cascade_class_ensemble: bool = False,
min_level: Optional[int] = None,
max_level: Optional[int] = None,
num_scales: Optional[int] = None,
aspect_ratios: Optional[List[float]] = None,
anchor_size: Optional[float] = None,
outer_boxes_scale: float = 1.0,
**kwargs):
"""Initializes the R-CNN(-RS) model.
Args:
backbone: `tf_keras.Model`, the backbone network.
decoder: `tf_keras.Model`, the decoder network.
rpn_head: the RPN head.
detection_head: the detection head or a list of heads.
roi_generator: the ROI generator.
roi_sampler: a single ROI sampler or a list of ROI samplers for cascade
detection heads.
roi_aligner: the ROI aligner.
detection_generator: the detection generator.
mask_head: the mask head.
mask_sampler: the mask sampler.
mask_roi_aligner: the ROI alginer for mask prediction.
class_agnostic_bbox_pred: if True, perform class agnostic bounding box
prediction. Needs to be `True` for Cascade RCNN models.
cascade_class_ensemble: if True, ensemble classification scores over all
detection heads.
min_level: Minimum level in output feature maps.
max_level: Maximum level in output feature maps.
num_scales: A number representing intermediate scales added on each level.
For instances, num_scales=2 adds one additional intermediate anchor
scales [2^0, 2^0.5] on each level.
aspect_ratios: A list representing the aspect raito anchors added on each
level. The number indicates the ratio of width to height. For instances,
aspect_ratios=[1.0, 2.0, 0.5] adds three anchors on each scale level.
anchor_size: A number representing the scale of size of the base anchor to
the feature stride 2^level.
outer_boxes_scale: a float to scale up the bounding boxes to generate
more inclusive masks. The scale is expected to be >=1.0.
**kwargs: keyword arguments to be passed.
"""
super().__init__(**kwargs)
self._config_dict = {
'backbone': backbone,
'decoder': decoder,
'rpn_head': rpn_head,
'detection_head': detection_head,
'roi_generator': roi_generator,
'roi_sampler': roi_sampler,
'roi_aligner': roi_aligner,
'detection_generator': detection_generator,
'outer_boxes_scale': outer_boxes_scale,
'mask_head': mask_head,
'mask_sampler': mask_sampler,
'mask_roi_aligner': mask_roi_aligner,
'class_agnostic_bbox_pred': class_agnostic_bbox_pred,
'cascade_class_ensemble': cascade_class_ensemble,
'min_level': min_level,
'max_level': max_level,
'num_scales': num_scales,
'aspect_ratios': aspect_ratios,
'anchor_size': anchor_size,
}
self.backbone = backbone
self.decoder = decoder
self.rpn_head = rpn_head
if not isinstance(detection_head, (list, tuple)):
self.detection_head = [detection_head]
else:
self.detection_head = detection_head
self.roi_generator = roi_generator
if not isinstance(roi_sampler, (list, tuple)):
self.roi_sampler = [roi_sampler]
else:
self.roi_sampler = roi_sampler
if len(self.roi_sampler) > 1 and not class_agnostic_bbox_pred:
raise ValueError(
'`class_agnostic_bbox_pred` needs to be True if multiple detection heads are specified.'
)
self.roi_aligner = roi_aligner
self.detection_generator = detection_generator
self._include_mask = mask_head is not None
if outer_boxes_scale < 1.0:
raise ValueError('`outer_boxes_scale` should be a value >= 1.0.')
self.outer_boxes_scale = outer_boxes_scale
self.mask_head = mask_head
if self._include_mask and mask_sampler is None:
raise ValueError('`mask_sampler` is not provided in Mask R-CNN.')
self.mask_sampler = mask_sampler
if self._include_mask and mask_roi_aligner is None:
raise ValueError('`mask_roi_aligner` is not provided in Mask R-CNN.')
self.mask_roi_aligner = mask_roi_aligner
# Weights for the regression losses for each FRCNN layer.
# TODO(jiageng): Make the weights configurable.
self._cascade_layer_to_weights = [
[10.0, 10.0, 5.0, 5.0],
[20.0, 20.0, 10.0, 10.0],
[30.0, 30.0, 15.0, 15.0],
]
def call( # pytype: disable=signature-mismatch # overriding-parameter-count-checks
self,
images: tf.Tensor,
image_shape: tf.Tensor,
anchor_boxes: Optional[Mapping[str, tf.Tensor]] = None,
gt_boxes: Optional[tf.Tensor] = None,
gt_classes: Optional[tf.Tensor] = None,
gt_masks: Optional[tf.Tensor] = None,
gt_outer_boxes: Optional[tf.Tensor] = None,
training: Optional[bool] = None) -> Mapping[str, Optional[tf.Tensor]]:
call_box_outputs_kwargs = {
'images': images,
'image_shape': image_shape,
'anchor_boxes': anchor_boxes,
'gt_boxes': gt_boxes,
'gt_classes': gt_classes,
'training': training,
}
if self.outer_boxes_scale > 1.0:
call_box_outputs_kwargs['gt_outer_boxes'] = gt_outer_boxes
model_outputs, intermediate_outputs = self._call_box_outputs(
**call_box_outputs_kwargs)
if not self._include_mask:
return model_outputs
if self.outer_boxes_scale == 1.0:
current_rois = intermediate_outputs['current_rois']
matched_gt_boxes = intermediate_outputs['matched_gt_boxes']
else:
current_rois = box_ops.compute_outer_boxes(
intermediate_outputs['current_rois'],
tf.expand_dims(image_shape, axis=1), self.outer_boxes_scale)
matched_gt_boxes = intermediate_outputs['matched_gt_outer_boxes']
model_mask_outputs = self._call_mask_outputs(
model_box_outputs=model_outputs,
features=model_outputs['decoder_features'],
current_rois=current_rois,
matched_gt_indices=intermediate_outputs['matched_gt_indices'],
matched_gt_boxes=matched_gt_boxes,
matched_gt_classes=intermediate_outputs['matched_gt_classes'],
gt_masks=gt_masks,
training=training)
model_outputs.update(model_mask_outputs) # pytype: disable=attribute-error # dynamic-method-lookup
return model_outputs
def _get_backbone_and_decoder_features(self, images):
backbone_features = self.backbone(images)
if self.decoder:
features = self.decoder(backbone_features)
else:
features = backbone_features
return backbone_features, features
def _call_box_outputs(
self,
images: tf.Tensor,
image_shape: tf.Tensor,
anchor_boxes: Optional[Mapping[str, tf.Tensor]] = None,
gt_boxes: Optional[tf.Tensor] = None,
gt_classes: Optional[tf.Tensor] = None,
training: Optional[bool] = None,
gt_outer_boxes: Optional[tf.Tensor] = None,
) -> Tuple[Mapping[str, Any], Mapping[str, Any]]:
"""Implementation of the Faster-RCNN logic for boxes."""
model_outputs = {}
# Feature extraction.
(backbone_features,
decoder_features) = self._get_backbone_and_decoder_features(images)
# Region proposal network.
rpn_scores, rpn_boxes = self.rpn_head(decoder_features)
model_outputs.update({
'backbone_features': backbone_features,
'decoder_features': decoder_features,
'rpn_boxes': rpn_boxes,
'rpn_scores': rpn_scores
})
# Generate anchor boxes for this batch if not provided.
if anchor_boxes is None:
_, image_height, image_width, _ = images.get_shape().as_list()
anchor_boxes = anchor.Anchor(
min_level=self._config_dict['min_level'],
max_level=self._config_dict['max_level'],
num_scales=self._config_dict['num_scales'],
aspect_ratios=self._config_dict['aspect_ratios'],
anchor_size=self._config_dict['anchor_size'],
image_size=(image_height, image_width)).multilevel_boxes
for l in anchor_boxes:
anchor_boxes[l] = tf.tile(
tf.expand_dims(anchor_boxes[l], axis=0),
[tf.shape(images)[0], 1, 1, 1])
# Generate RoIs.
current_rois, _ = self.roi_generator(rpn_boxes, rpn_scores, anchor_boxes,
image_shape, training)
next_rois = current_rois
all_class_outputs = []
for cascade_num in range(len(self.roi_sampler)):
# In cascade RCNN we want the higher layers to have different regression
# weights as the predicted deltas become smaller and smaller.
regression_weights = self._cascade_layer_to_weights[cascade_num]
current_rois = next_rois
if self.outer_boxes_scale == 1.0:
(class_outputs, box_outputs, model_outputs, matched_gt_boxes,
matched_gt_classes, matched_gt_indices,
current_rois) = self._run_frcnn_head(
features=decoder_features,
rois=current_rois,
gt_boxes=gt_boxes,
gt_classes=gt_classes,
training=training,
model_outputs=model_outputs,
cascade_num=cascade_num,
regression_weights=regression_weights)
else:
(class_outputs, box_outputs, model_outputs,
(matched_gt_boxes, matched_gt_outer_boxes), matched_gt_classes,
matched_gt_indices, current_rois) = self._run_frcnn_head(
features=decoder_features,
rois=current_rois,
gt_boxes=gt_boxes,
gt_outer_boxes=gt_outer_boxes,
gt_classes=gt_classes,
training=training,
model_outputs=model_outputs,
cascade_num=cascade_num,
regression_weights=regression_weights)
all_class_outputs.append(class_outputs)
# Generate ROIs for the next cascade head if there is any.
if cascade_num < len(self.roi_sampler) - 1:
next_rois = box_ops.decode_boxes(
tf.cast(box_outputs, tf.float32),
current_rois,
weights=regression_weights)
next_rois = box_ops.clip_boxes(next_rois,
tf.expand_dims(image_shape, axis=1))
if not training:
if self._config_dict['cascade_class_ensemble']:
class_outputs = tf.add_n(all_class_outputs) / len(all_class_outputs)
detections = self.detection_generator(
box_outputs,
class_outputs,
current_rois,
image_shape,
regression_weights,
bbox_per_class=(not self._config_dict['class_agnostic_bbox_pred']))
model_outputs.update({
'cls_outputs': class_outputs,
'box_outputs': box_outputs,
})
if self.detection_generator.get_config()['apply_nms']:
model_outputs.update({
'detection_boxes': detections['detection_boxes'],
'detection_scores': detections['detection_scores'],
'detection_classes': detections['detection_classes'],
'num_detections': detections['num_detections']
})
if self.outer_boxes_scale > 1.0:
detection_outer_boxes = box_ops.compute_outer_boxes(
detections['detection_boxes'],
tf.expand_dims(image_shape, axis=1), self.outer_boxes_scale)
model_outputs['detection_outer_boxes'] = detection_outer_boxes
else:
model_outputs.update({
'decoded_boxes': detections['decoded_boxes'],
'decoded_box_scores': detections['decoded_box_scores']
})
intermediate_outputs = {
'matched_gt_boxes': matched_gt_boxes,
'matched_gt_indices': matched_gt_indices,
'matched_gt_classes': matched_gt_classes,
'current_rois': current_rois,
}
if self.outer_boxes_scale > 1.0:
intermediate_outputs['matched_gt_outer_boxes'] = matched_gt_outer_boxes
return (model_outputs, intermediate_outputs)
def _call_mask_outputs(
self,
model_box_outputs: Mapping[str, tf.Tensor],
features: tf.Tensor,
current_rois: tf.Tensor,
matched_gt_indices: tf.Tensor,
matched_gt_boxes: tf.Tensor,
matched_gt_classes: tf.Tensor,
gt_masks: tf.Tensor,
training: Optional[bool] = None) -> Mapping[str, tf.Tensor]:
"""Implementation of Mask-RCNN mask prediction logic."""
model_outputs = dict(model_box_outputs)
if training:
current_rois, roi_classes, roi_masks = self.mask_sampler(
current_rois, matched_gt_boxes, matched_gt_classes,
matched_gt_indices, gt_masks)
roi_masks = tf.stop_gradient(roi_masks)
model_outputs.update({
'mask_class_targets': roi_classes,
'mask_targets': roi_masks,
})
else:
if self.outer_boxes_scale == 1.0:
current_rois = model_outputs['detection_boxes']
else:
current_rois = model_outputs['detection_outer_boxes']
roi_classes = model_outputs['detection_classes']
mask_logits, mask_probs = self._features_to_mask_outputs(
features, current_rois, roi_classes)
if training:
model_outputs.update({
'mask_outputs': mask_logits,
})
else:
model_outputs.update({
'detection_masks': mask_probs,
})
return model_outputs
def _run_frcnn_head(self,
features,
rois,
gt_boxes,
gt_classes,
training,
model_outputs,
cascade_num,
regression_weights,
gt_outer_boxes=None):
"""Runs the frcnn head that does both class and box prediction.
Args:
features: `list` of features from the feature extractor.
rois: `list` of current rois that will be used to predict bbox refinement
and classes from.
gt_boxes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES, 4].
This tensor might have paddings with a negative value.
gt_classes: [batch_size, MAX_INSTANCES] representing the groundtruth box
classes. It is padded with -1s to indicate the invalid classes.
training: `bool`, if model is training or being evaluated.
model_outputs: `dict`, used for storing outputs used for eval and losses.
cascade_num: `int`, the current frcnn layer in the cascade.
regression_weights: `list`, weights used for l1 loss in bounding box
regression.
gt_outer_boxes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES,
4]. This tensor might have paddings with a negative value. Default to
None.
Returns:
class_outputs: Class predictions for rois.
box_outputs: Box predictions for rois. These are formatted for the
regression loss and need to be converted before being used as rois
in the next stage.
model_outputs: Updated dict with predictions used for losses and eval.
matched_gt_boxes: If `is_training` is true, then these give the gt box
location of its positive match.
matched_gt_classes: If `is_training` is true, then these give the gt class
of the predicted box.
matched_gt_boxes: If `is_training` is true, then these give the box
location of its positive match.
matched_gt_outer_boxes: If `is_training` is true, then these give the
outer box location of its positive match. Only exist if
outer_boxes_scale is greater than 1.0.
matched_gt_indices: If `is_training` is true, then gives the index of
the positive box match. Used for mask prediction.
rois: The sampled rois used for this layer.
"""
# Only used during training.
matched_gt_boxes, matched_gt_classes, matched_gt_indices = None, None, None
if self.outer_boxes_scale > 1.0:
matched_gt_outer_boxes = None
if training and gt_boxes is not None:
rois = tf.stop_gradient(rois)
current_roi_sampler = self.roi_sampler[cascade_num]
if self.outer_boxes_scale == 1.0:
rois, matched_gt_boxes, matched_gt_classes, matched_gt_indices = (
current_roi_sampler(rois, gt_boxes, gt_classes))
else:
(rois, matched_gt_boxes, matched_gt_outer_boxes, matched_gt_classes,
matched_gt_indices) = current_roi_sampler(rois, gt_boxes, gt_classes,
gt_outer_boxes)
# Create bounding box training targets.
box_targets = box_ops.encode_boxes(
matched_gt_boxes, rois, weights=regression_weights)
# If the target is background, the box target is set to all 0s.
box_targets = tf.where(
tf.tile(
tf.expand_dims(tf.equal(matched_gt_classes, 0), axis=-1),
[1, 1, 4]), tf.zeros_like(box_targets), box_targets)
model_outputs.update({
'class_targets_{}'.format(cascade_num)
if cascade_num else 'class_targets':
matched_gt_classes,
'box_targets_{}'.format(cascade_num)
if cascade_num else 'box_targets':
box_targets,
})
# Get roi features.
roi_features = self.roi_aligner(features, rois)
# Run frcnn head to get class and bbox predictions.
current_detection_head = self.detection_head[cascade_num]
class_outputs, box_outputs = current_detection_head(roi_features)
model_outputs.update({
'class_outputs_{}'.format(cascade_num)
if cascade_num else 'class_outputs':
class_outputs,
'box_outputs_{}'.format(cascade_num) if cascade_num else 'box_outputs':
box_outputs,
})
if self.outer_boxes_scale == 1.0:
return (class_outputs, box_outputs, model_outputs, matched_gt_boxes,
matched_gt_classes, matched_gt_indices, rois)
else:
return (class_outputs, box_outputs, model_outputs,
(matched_gt_boxes, matched_gt_outer_boxes), matched_gt_classes,
matched_gt_indices, rois)
def _features_to_mask_outputs(self, features, rois, roi_classes):
# Mask RoI align.
mask_roi_features = self.mask_roi_aligner(features, rois)
# Mask head.
raw_masks = self.mask_head([mask_roi_features, roi_classes])
return raw_masks, tf.nn.sigmoid(raw_masks)
@property
def checkpoint_items(
self) -> Mapping[str, Union[tf_keras.Model, tf_keras.layers.Layer]]:
"""Returns a dictionary of items to be additionally checkpointed."""
items = dict(
backbone=self.backbone,
rpn_head=self.rpn_head,
detection_head=self.detection_head)
if self.decoder is not None:
items.update(decoder=self.decoder)
if self._include_mask:
items.update(mask_head=self.mask_head)
return items
def get_config(self) -> Mapping[str, Any]:
return self._config_dict
@classmethod
def from_config(cls, config):
return cls(**config)
|