Spaces:
Runtime error
Runtime error
File size: 8,610 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions of Atrous Spatial Pyramid Pooling (ASPP) decoder."""
from typing import Any, List, Mapping, Optional, Union
# Import libraries
import tensorflow as tf, tf_keras
from official.modeling import hyperparams
from official.vision.modeling.decoders import factory
from official.vision.modeling.layers import deeplab
from official.vision.modeling.layers import nn_layers
TensorMapUnion = Union[tf.Tensor, Mapping[str, tf.Tensor]]
@tf_keras.utils.register_keras_serializable(package='Vision')
class ASPP(tf_keras.layers.Layer):
"""Creates an Atrous Spatial Pyramid Pooling (ASPP) layer."""
def __init__(
self,
level: int,
dilation_rates: List[int],
num_filters: int = 256,
pool_kernel_size: Optional[int] = None,
use_sync_bn: bool = False,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
activation: str = 'relu',
dropout_rate: float = 0.0,
kernel_initializer: str = 'VarianceScaling',
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
interpolation: str = 'bilinear',
use_depthwise_convolution: bool = False,
spp_layer_version: str = 'v1',
output_tensor: bool = False,
**kwargs):
"""Initializes an Atrous Spatial Pyramid Pooling (ASPP) layer.
Args:
level: An `int` level to apply ASPP.
dilation_rates: A `list` of dilation rates.
num_filters: An `int` number of output filters in ASPP.
pool_kernel_size: A `list` of [height, width] of pooling kernel size or
None. Pooling size is with respect to original image size, it will be
scaled down by 2**level. If None, global average pooling is used.
use_sync_bn: A `bool`. If True, use synchronized batch normalization.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
activation: A `str` activation to be used in ASPP.
dropout_rate: A `float` rate for dropout regularization.
kernel_initializer: A `str` name of kernel_initializer for convolutional
layers.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default is None.
interpolation: A `str` of interpolation method. It should be one of
`bilinear`, `nearest`, `bicubic`, `area`, `lanczos3`, `lanczos5`,
`gaussian`, or `mitchellcubic`.
use_depthwise_convolution: If True depthwise separable convolutions will
be added to the Atrous spatial pyramid pooling.
spp_layer_version: A `str` of spatial pyramid pooling layer version.
output_tensor: Whether to output a single tensor or a dictionary of tensor.
Default is false.
**kwargs: Additional keyword arguments to be passed.
"""
super().__init__(**kwargs)
self._config_dict = {
'level': level,
'dilation_rates': dilation_rates,
'num_filters': num_filters,
'pool_kernel_size': pool_kernel_size,
'use_sync_bn': use_sync_bn,
'norm_momentum': norm_momentum,
'norm_epsilon': norm_epsilon,
'activation': activation,
'dropout_rate': dropout_rate,
'kernel_initializer': kernel_initializer,
'kernel_regularizer': kernel_regularizer,
'interpolation': interpolation,
'use_depthwise_convolution': use_depthwise_convolution,
'spp_layer_version': spp_layer_version,
'output_tensor': output_tensor
}
self._aspp_layer = deeplab.SpatialPyramidPooling if self._config_dict[
'spp_layer_version'] == 'v1' else nn_layers.SpatialPyramidPooling
def build(self, input_shape):
pool_kernel_size = None
if self._config_dict['pool_kernel_size']:
pool_kernel_size = [
int(p_size // 2**self._config_dict['level'])
for p_size in self._config_dict['pool_kernel_size'] # pytype: disable=attribute-error # trace-all-classes
]
self.aspp = self._aspp_layer(
output_channels=self._config_dict['num_filters'],
dilation_rates=self._config_dict['dilation_rates'],
pool_kernel_size=pool_kernel_size,
use_sync_bn=self._config_dict['use_sync_bn'],
batchnorm_momentum=self._config_dict['norm_momentum'],
batchnorm_epsilon=self._config_dict['norm_epsilon'],
activation=self._config_dict['activation'],
dropout=self._config_dict['dropout_rate'],
kernel_initializer=self._config_dict['kernel_initializer'],
kernel_regularizer=self._config_dict['kernel_regularizer'],
interpolation=self._config_dict['interpolation'],
use_depthwise_convolution=self._config_dict['use_depthwise_convolution']
)
def call(self, inputs: TensorMapUnion) -> TensorMapUnion:
"""Calls the Atrous Spatial Pyramid Pooling (ASPP) layer on an input.
The output of ASPP will be a dict of {`level`, `tf.Tensor`} even if only one
level is present, if output_tensor is false. Hence, this will be compatible
with the rest of the segmentation model interfaces.
If output_tensor is true, a single tensot is output.
Args:
inputs: A `tf.Tensor` of shape [batch, height_l, width_l, filter_size] or
a `dict` of `tf.Tensor` where
- key: A `str` of the level of the multilevel feature maps.
- values: A `tf.Tensor` of shape [batch, height_l, width_l,
filter_size].
Returns:
A `tf.Tensor` of shape [batch, height_l, width_l, filter_size] or a `dict`
of `tf.Tensor` where
- key: A `str` of the level of the multilevel feature maps.
- values: A `tf.Tensor` of output of ASPP module.
"""
outputs = {}
level = str(self._config_dict['level'])
backbone_output = inputs[level] if isinstance(inputs, dict) else inputs
outputs = self.aspp(backbone_output)
return outputs if self._config_dict['output_tensor'] else {level: outputs}
def get_config(self) -> Mapping[str, Any]:
base_config = super().get_config()
return dict(list(base_config.items()) + list(self._config_dict.items()))
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@factory.register_decoder_builder('aspp')
def build_aspp_decoder(
input_specs: Mapping[str, tf.TensorShape],
model_config: hyperparams.Config,
l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None
) -> tf_keras.Model:
"""Builds ASPP decoder from a config.
Args:
input_specs: A `dict` of input specifications. A dictionary consists of
{level: TensorShape} from a backbone. Note this is for consistent
interface, and is not used by ASPP decoder.
model_config: A OneOfConfig. Model config.
l2_regularizer: A `tf_keras.regularizers.Regularizer` instance. Default to
None.
Returns:
A `tf_keras.Model` instance of the ASPP decoder.
Raises:
ValueError: If the model_config.decoder.type is not `aspp`.
"""
del input_specs # input_specs is not used by ASPP decoder.
decoder_type = model_config.decoder.type
decoder_cfg = model_config.decoder.get()
if decoder_type != 'aspp':
raise ValueError(f'Inconsistent decoder type {decoder_type}. '
'Need to be `aspp`.')
norm_activation_config = model_config.norm_activation
return ASPP(
level=decoder_cfg.level,
dilation_rates=decoder_cfg.dilation_rates,
num_filters=decoder_cfg.num_filters,
use_depthwise_convolution=decoder_cfg.use_depthwise_convolution,
pool_kernel_size=decoder_cfg.pool_kernel_size,
dropout_rate=decoder_cfg.dropout_rate,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
activation=norm_activation_config.activation,
kernel_regularizer=l2_regularizer,
spp_layer_version=decoder_cfg.spp_layer_version,
output_tensor=decoder_cfg.output_tensor)
|