File size: 6,587 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Script to compute official BLEU score.

Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/bleu_hook.py
"""

import collections
import math
import re
import sys
import unicodedata

import numpy as np
import tensorflow as tf, tf_keras


class UnicodeRegex(object):
  """Ad-hoc hack to recognize all punctuation and symbols."""

  def __init__(self):
    punctuation = self.property_chars("P")
    self.nondigit_punct_re = re.compile(r"([^\d])([" + punctuation + r"])")
    self.punct_nondigit_re = re.compile(r"([" + punctuation + r"])([^\d])")
    self.symbol_re = re.compile("([" + self.property_chars("S") + "])")

  def property_chars(self, prefix):
    return "".join(
        chr(x)
        for x in range(sys.maxunicode)
        if unicodedata.category(chr(x)).startswith(prefix))


uregex = UnicodeRegex()


def bleu_tokenize(string):
  r"""Tokenize a string following the official BLEU implementation.

  See https://github.com/moses-smt/mosesdecoder/'
           'blob/master/scripts/generic/mteval-v14.pl#L954-L983
  In our case, the input string is expected to be just one line
  and no HTML entities de-escaping is needed.
  So we just tokenize on punctuation and symbols,
  except when a punctuation is preceded and followed by a digit
  (e.g. a comma/dot as a thousand/decimal separator).

  Note that a numer (e.g. a year) followed by a dot at the end of sentence
  is NOT tokenized,
  i.e. the dot stays with the number because `s/(\p{P})(\P{N})/ $1 $2/g`
  does not match this case (unless we add a space after each sentence).
  However, this error is already in the original mteval-v14.pl
  and we want to be consistent with it.

  Args:
    string: the input string

  Returns:
    a list of tokens
  """
  string = uregex.nondigit_punct_re.sub(r"\1 \2 ", string)
  string = uregex.punct_nondigit_re.sub(r" \1 \2", string)
  string = uregex.symbol_re.sub(r" \1 ", string)
  return string.split()


def bleu_wrapper(ref_filename, hyp_filename, case_sensitive=False):
  """Compute BLEU for two files (reference and hypothesis translation)."""
  ref_lines = tf.io.gfile.GFile(ref_filename).read().strip().splitlines()
  hyp_lines = tf.io.gfile.GFile(hyp_filename).read().strip().splitlines()
  return bleu_on_list(ref_lines, hyp_lines, case_sensitive)


def _get_ngrams_with_counter(segment, max_order):
  """Extracts all n-grams up to a given maximum order from an input segment.

  Args:
    segment: text segment from which n-grams will be extracted.
    max_order: maximum length in tokens of the n-grams returned by this methods.

  Returns:
    The Counter containing all n-grams upto max_order in segment
    with a count of how many times each n-gram occurred.
  """
  ngram_counts = collections.Counter()
  for order in range(1, max_order + 1):
    for i in range(0, len(segment) - order + 1):
      ngram = tuple(segment[i:i + order])
      ngram_counts[ngram] += 1
  return ngram_counts


def compute_bleu(reference_corpus,
                 translation_corpus,
                 max_order=4,
                 use_bp=True):
  """Computes BLEU score of translated segments against one or more references.

  Args:
    reference_corpus: list of references for each translation. Each reference
      should be tokenized into a list of tokens.
    translation_corpus: list of translations to score. Each translation should
      be tokenized into a list of tokens.
    max_order: Maximum n-gram order to use when computing BLEU score.
    use_bp: boolean, whether to apply brevity penalty.

  Returns:
    BLEU score.
  """
  reference_length = 0
  translation_length = 0
  bp = 1.0
  geo_mean = 0

  matches_by_order = [0] * max_order
  possible_matches_by_order = [0] * max_order
  precisions = []

  for (references, translations) in zip(reference_corpus, translation_corpus):
    reference_length += len(references)
    translation_length += len(translations)
    ref_ngram_counts = _get_ngrams_with_counter(references, max_order)
    translation_ngram_counts = _get_ngrams_with_counter(translations, max_order)

    overlap = dict((ngram, min(count, translation_ngram_counts[ngram]))
                   for ngram, count in ref_ngram_counts.items())

    for ngram in overlap:
      matches_by_order[len(ngram) - 1] += overlap[ngram]
    for ngram in translation_ngram_counts:
      possible_matches_by_order[len(ngram) -
                                1] += translation_ngram_counts[ngram]

  precisions = [0] * max_order
  smooth = 1.0

  for i in range(0, max_order):
    if possible_matches_by_order[i] > 0:
      precisions[i] = float(matches_by_order[i]) / possible_matches_by_order[i]
      if matches_by_order[i] > 0:
        precisions[i] = float(
            matches_by_order[i]) / possible_matches_by_order[i]
      else:
        smooth *= 2
        precisions[i] = 1.0 / (smooth * possible_matches_by_order[i])
    else:
      precisions[i] = 0.0

  if max(precisions) > 0:
    p_log_sum = sum(math.log(p) for p in precisions if p)
    geo_mean = math.exp(p_log_sum / max_order)

  if use_bp:
    ratio = translation_length / reference_length
    bp = 0. if ratio < 1e-6 else math.exp(1 -
                                          1. / ratio) if ratio < 1.0 else 1.0
  bleu = geo_mean * bp
  return np.float32(bleu)


def bleu_on_list(ref_lines, hyp_lines, case_sensitive=False):
  """Compute BLEU for two list of strings (reference and hypothesis)."""
  if len(ref_lines) != len(hyp_lines):
    raise ValueError(
        "Reference and translation files have different number of "
        "lines (%d VS %d). If training only a few steps (100-200), the "
        "translation may be empty." % (len(ref_lines), len(hyp_lines)))
  if not case_sensitive:
    ref_lines = [x.lower() for x in ref_lines]
    hyp_lines = [x.lower() for x in hyp_lines]
  ref_tokens = [bleu_tokenize(x) for x in ref_lines]
  hyp_tokens = [bleu_tokenize(x) for x in hyp_lines]
  return compute_bleu(ref_tokens, hyp_tokens) * 100