Spaces:
Runtime error
Runtime error
File size: 14,243 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image segmentation task definition."""
from typing import Any, List, Mapping, Optional, Tuple, Union
from absl import logging
import tensorflow as tf, tf_keras
from official.common import dataset_fn
from official.core import base_task
from official.core import task_factory
from official.vision.configs import semantic_segmentation as exp_cfg
from official.vision.dataloaders import input_reader
from official.vision.dataloaders import input_reader_factory
from official.vision.dataloaders import segmentation_input
from official.vision.dataloaders import tfds_factory
from official.vision.evaluation import segmentation_metrics
from official.vision.losses import segmentation_losses
from official.vision.modeling import factory
from official.vision.utils.object_detection import visualization_utils
@task_factory.register_task_cls(exp_cfg.SemanticSegmentationTask)
class SemanticSegmentationTask(base_task.Task):
"""A task for semantic segmentation."""
def build_model(self):
"""Builds segmentation model."""
input_specs = tf_keras.layers.InputSpec(shape=[None] +
self.task_config.model.input_size)
l2_weight_decay = self.task_config.losses.l2_weight_decay
# Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
# (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
# (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
l2_regularizer = (
tf_keras.regularizers.l2(l2_weight_decay /
2.0) if l2_weight_decay else None)
model = factory.build_segmentation_model(
input_specs=input_specs,
model_config=self.task_config.model,
l2_regularizer=l2_regularizer)
# Builds the model
dummy_inputs = tf_keras.Input(self.task_config.model.input_size)
_ = model(dummy_inputs, training=False)
return model
def initialize(self, model: tf_keras.Model):
"""Loads pretrained checkpoint."""
if not self.task_config.init_checkpoint:
return
ckpt_dir_or_file = self.task_config.init_checkpoint
if tf.io.gfile.isdir(ckpt_dir_or_file):
ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)
# Restoring checkpoint.
if 'all' in self.task_config.init_checkpoint_modules:
ckpt = tf.train.Checkpoint(**model.checkpoint_items)
status = ckpt.read(ckpt_dir_or_file)
status.expect_partial().assert_existing_objects_matched()
else:
ckpt_items = {}
if 'backbone' in self.task_config.init_checkpoint_modules:
ckpt_items.update(backbone=model.backbone)
if 'decoder' in self.task_config.init_checkpoint_modules:
ckpt_items.update(decoder=model.decoder)
ckpt = tf.train.Checkpoint(**ckpt_items)
status = ckpt.read(ckpt_dir_or_file)
status.expect_partial().assert_existing_objects_matched()
logging.info('Finished loading pretrained checkpoint from %s',
ckpt_dir_or_file)
def build_inputs(self,
params: exp_cfg.DataConfig,
input_context: Optional[tf.distribute.InputContext] = None):
"""Builds classification input."""
ignore_label = self.task_config.losses.ignore_label
gt_is_matting_map = self.task_config.losses.gt_is_matting_map
if params.tfds_name:
decoder = tfds_factory.get_segmentation_decoder(params.tfds_name)
else:
decoder = segmentation_input.Decoder(
image_feature=params.image_feature,
additional_dense_features=params.additional_dense_features)
parser = segmentation_input.Parser(
output_size=params.output_size,
crop_size=params.crop_size,
ignore_label=ignore_label,
resize_eval_groundtruth=params.resize_eval_groundtruth,
gt_is_matting_map=gt_is_matting_map,
groundtruth_padded_size=params.groundtruth_padded_size,
aug_scale_min=params.aug_scale_min,
aug_scale_max=params.aug_scale_max,
aug_rand_hflip=params.aug_rand_hflip,
preserve_aspect_ratio=params.preserve_aspect_ratio,
dtype=params.dtype,
image_feature=params.image_feature,
additional_dense_features=params.additional_dense_features)
reader = input_reader_factory.input_reader_generator(
params,
dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
decoder_fn=decoder.decode,
combine_fn=input_reader.create_combine_fn(params),
parser_fn=parser.parse_fn(params.is_training))
dataset = reader.read(input_context=input_context)
return dataset
def build_losses(self,
labels: Mapping[str, tf.Tensor],
model_outputs: Union[Mapping[str, tf.Tensor], tf.Tensor],
aux_losses: Optional[Any] = None):
"""Segmentation loss.
Args:
labels: labels.
model_outputs: Output logits of the classifier.
aux_losses: auxiliarly loss tensors, i.e. `losses` in keras.Model.
Returns:
The total loss tensor.
"""
loss_params = self._task_config.losses
segmentation_loss_fn = segmentation_losses.SegmentationLoss(
loss_params.label_smoothing,
loss_params.class_weights,
loss_params.ignore_label,
use_groundtruth_dimension=loss_params.use_groundtruth_dimension,
use_binary_cross_entropy=loss_params.use_binary_cross_entropy,
top_k_percent_pixels=loss_params.top_k_percent_pixels,
gt_is_matting_map=loss_params.gt_is_matting_map)
total_loss = segmentation_loss_fn(model_outputs['logits'], labels['masks'])
if 'mask_scores' in model_outputs:
mask_scoring_loss_fn = segmentation_losses.MaskScoringLoss(
loss_params.ignore_label)
total_loss += loss_params.mask_scoring_weight * mask_scoring_loss_fn(
model_outputs['mask_scores'],
model_outputs['logits'],
labels['masks'])
if aux_losses:
total_loss += tf.add_n(aux_losses)
total_loss = loss_params.loss_weight * total_loss
return total_loss
def process_metrics(self, metrics, labels, model_outputs, **kwargs):
"""Process and update metrics.
Called when using custom training loop API.
Args:
metrics: a nested structure of metrics objects. The return of function
self.build_metrics.
labels: a tensor or a nested structure of tensors.
model_outputs: a tensor or a nested structure of tensors. For example,
output of the keras model built by self.build_model.
**kwargs: other args.
"""
for metric in metrics:
if 'mask_scores_mse' == metric.name:
actual_mask_scores = segmentation_losses.get_actual_mask_scores(
model_outputs['logits'], labels['masks'],
self.task_config.losses.ignore_label)
metric.update_state(actual_mask_scores, model_outputs['mask_scores'])
else:
metric.update_state(labels, model_outputs['logits'])
def build_metrics(self, training: bool = True):
"""Gets streaming metrics for training/validation."""
metrics = []
self.iou_metric = None
if training and self.task_config.evaluation.report_train_mean_iou:
metrics.append(
segmentation_metrics.MeanIoU(
name='mean_iou',
num_classes=self.task_config.model.num_classes,
rescale_predictions=False,
dtype=tf.float32))
if self.task_config.model.get('mask_scoring_head'):
metrics.append(
tf_keras.metrics.MeanSquaredError(name='mask_scores_mse'))
if not training:
self.iou_metric = segmentation_metrics.PerClassIoU(
name='per_class_iou',
num_classes=self.task_config.model.num_classes,
rescale_predictions=(
not self.task_config.validation_data.resize_eval_groundtruth),
dtype=tf.float32)
if (self.task_config.validation_data.resize_eval_groundtruth and
self.task_config.model.get('mask_scoring_head')):
# Masks scores metric can only be computed if labels are scaled to match
# preticted mask scores.
metrics.append(
tf_keras.metrics.MeanSquaredError(name='mask_scores_mse'))
return metrics
def train_step(self,
inputs: Tuple[Any, Any],
model: tf_keras.Model,
optimizer: tf_keras.optimizers.Optimizer,
metrics: Optional[List[Any]] = None):
"""Does forward and backward.
Args:
inputs: a dictionary of input tensors.
model: the model, forward pass definition.
optimizer: the optimizer for this training step.
metrics: a nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
features, labels = inputs
input_partition_dims = self.task_config.train_input_partition_dims
if input_partition_dims:
strategy = tf.distribute.get_strategy()
features = strategy.experimental_split_to_logical_devices(
features, input_partition_dims)
num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
with tf.GradientTape() as tape:
outputs = model(features, training=True)
if isinstance(outputs, tf.Tensor):
outputs = {'logits': outputs}
# Casting output layer as float32 is necessary when mixed_precision is
# mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
# Computes per-replica loss.
loss = self.build_losses(
model_outputs=outputs, labels=labels, aux_losses=model.losses)
# Scales loss as the default gradients allreduce performs sum inside the
# optimizer.
scaled_loss = loss / num_replicas
# For mixed_precision policy, when LossScaleOptimizer is used, loss is
# scaled for numerical stability.
if isinstance(optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
scaled_loss = optimizer.get_scaled_loss(scaled_loss)
tvars = model.trainable_variables
grads = tape.gradient(scaled_loss, tvars)
# Scales back gradient before apply_gradients when LossScaleOptimizer is
# used.
if isinstance(optimizer, tf_keras.mixed_precision.LossScaleOptimizer):
grads = optimizer.get_unscaled_gradients(grads)
optimizer.apply_gradients(list(zip(grads, tvars)))
logs = {self.loss: loss}
if metrics:
self.process_metrics(metrics, labels, outputs)
logs.update({m.name: m.result() for m in metrics})
return logs
def validation_step(self,
inputs: Tuple[Any, Any],
model: tf_keras.Model,
metrics: Optional[List[Any]] = None):
"""Validatation step.
Args:
inputs: a dictionary of input tensors.
model: the keras.Model.
metrics: a nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
features, labels = inputs
input_partition_dims = self.task_config.eval_input_partition_dims
if input_partition_dims:
strategy = tf.distribute.get_strategy()
features = strategy.experimental_split_to_logical_devices(
features, input_partition_dims)
outputs = self.inference_step(features, model)
if isinstance(outputs, tf.Tensor):
outputs = {'logits': outputs}
outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
if self.task_config.validation_data.resize_eval_groundtruth:
loss = self.build_losses(
model_outputs=outputs, labels=labels, aux_losses=model.losses)
else:
loss = 0
logs = {self.loss: loss}
if self.iou_metric is not None:
self.iou_metric.update_state(labels, outputs['logits'])
if metrics:
self.process_metrics(metrics, labels, outputs)
if (
hasattr(self.task_config, 'allow_image_summary')
and self.task_config.allow_image_summary
):
logs.update(
{'visualization': (tf.cast(features, dtype=tf.float32), outputs)}
)
return logs
def inference_step(self, inputs: tf.Tensor, model: tf_keras.Model):
"""Performs the forward step."""
return model(inputs, training=False)
def aggregate_logs(self, state=None, step_outputs=None):
if state is None and self.iou_metric is not None:
self.iou_metric.reset_states()
if 'visualization' in step_outputs:
# Update segmentation state for writing summary if there are artifacts for
# visualization.
if state is None:
state = {}
state.update(visualization_utils.update_segmentation_state(step_outputs))
if state is None:
# Create an arbitrary state to indicate it's not the first step in the
# following calls to this function.
state = True
return state
def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
logs = {}
if self.iou_metric is not None:
ious = self.iou_metric.result()
# TODO(arashwan): support loading class name from a label map file.
if self.task_config.evaluation.report_per_class_iou:
for i, value in enumerate(ious.numpy()):
logs.update({'iou/{}'.format(i): value})
# Computes mean IoU
logs.update({'mean_iou': tf.reduce_mean(ious)})
# Add visualization for summary.
if isinstance(aggregated_logs, dict) and 'image' in aggregated_logs:
validation_outputs = visualization_utils.visualize_segmentation_outputs(
logs=aggregated_logs, task_config=self.task_config
)
logs.update(validation_outputs)
return logs
|