File size: 14,438 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93528c6
 
 
 
 
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""VisionTransformer models."""

import math
from typing import Optional, Tuple

from absl import logging
import tensorflow as tf, tf_keras

from official.modeling import activations
from official.vision.modeling.backbones import factory
from official.vision.modeling.backbones.vit_specs import VIT_SPECS
from official.vision.modeling.layers import nn_blocks
from official.vision.modeling.layers import nn_layers


layers = tf_keras.layers


class AddPositionEmbs(layers.Layer):
  """Adds (optionally learned) positional embeddings to the inputs."""

  def __init__(self,
               posemb_init: Optional[tf_keras.initializers.Initializer] = None,
               posemb_origin_shape: Optional[Tuple[int, int]] = None,
               posemb_target_shape: Optional[Tuple[int, int]] = None,
               **kwargs):
    """Constructs Positional Embedding module.

    The logic of this module is: the learnable positional embeddings length will
    be determined by the inputs_shape or posemb_origin_shape (if provided)
    during the construction. If the posemb_target_shape is provided and is
    different from the positional embeddings length, the embeddings will be
    interpolated during the forward call.

    Args:
      posemb_init: The positional embedding initializer.
      posemb_origin_shape: The intended positional embedding shape.
      posemb_target_shape: The potential target shape positional embedding may
        be interpolated to.
      **kwargs: other args.
    """
    super().__init__(**kwargs)
    self.posemb_init = posemb_init
    self.posemb_origin_shape = posemb_origin_shape
    self.posemb_target_shape = posemb_target_shape

  def build(self, inputs_shape):
    if self.posemb_origin_shape is not None:
      pos_emb_length = self.posemb_origin_shape[0] * self.posemb_origin_shape[1]
    else:
      pos_emb_length = inputs_shape[1]
    pos_emb_shape = (1, pos_emb_length, inputs_shape[2])
    self.pos_embedding = self.add_weight(
        'pos_embedding', pos_emb_shape, initializer=self.posemb_init)

  def _interpolate(self, pos_embedding: tf.Tensor, from_shape: Tuple[int, int],
                   to_shape: Tuple[int, int]) -> tf.Tensor:
    """Interpolates the positional embeddings."""
    logging.info('Interpolating postional embedding from length: %s to %s',
                 from_shape, to_shape)
    grid_emb = tf.reshape(pos_embedding, [1] + list(from_shape) + [-1])
    # NOTE: Using BILINEAR interpolation by default.
    grid_emb = tf.image.resize(grid_emb, to_shape)
    return tf.reshape(grid_emb, [1, to_shape[0] * to_shape[1], -1])

  def call(self, inputs, inputs_positions=None):
    del inputs_positions
    pos_embedding = self.pos_embedding
    # inputs.shape is (batch_size, seq_len, emb_dim).
    if inputs.shape[1] != pos_embedding.shape[1]:
      pos_embedding = self._interpolate(
          pos_embedding,
          from_shape=self.posemb_origin_shape,
          to_shape=self.posemb_target_shape)
    pos_embedding = tf.cast(pos_embedding, inputs.dtype)

    return inputs + pos_embedding


class TokenLayer(layers.Layer):
  """A simple layer to wrap token parameters."""

  def build(self, inputs_shape):
    self.cls = self.add_weight(
        'cls', (1, 1, inputs_shape[-1]), initializer='zeros')

  def call(self, inputs):
    cls = tf.cast(self.cls, inputs.dtype)
    cls = cls + tf.zeros_like(inputs[:, 0:1])  # A hacky way to tile.
    x = tf.concat([cls, inputs], axis=1)
    return x


class Encoder(layers.Layer):
  """Transformer Encoder."""

  def __init__(self,
               num_layers,
               mlp_dim,
               num_heads,
               dropout_rate=0.1,
               attention_dropout_rate=0.1,
               kernel_regularizer=None,
               inputs_positions=None,
               init_stochastic_depth_rate=0.0,
               kernel_initializer='glorot_uniform',
               add_pos_embed=True,
               pos_embed_origin_shape=None,
               pos_embed_target_shape=None,
               layer_scale_init_value=0.0,
               transformer_partition_dims=None,
               **kwargs):
    super().__init__(**kwargs)
    self._num_layers = num_layers
    self._mlp_dim = mlp_dim
    self._num_heads = num_heads
    self._dropout_rate = dropout_rate
    self._attention_dropout_rate = attention_dropout_rate
    self._kernel_regularizer = kernel_regularizer
    self._inputs_positions = inputs_positions
    self._init_stochastic_depth_rate = init_stochastic_depth_rate
    self._kernel_initializer = kernel_initializer
    self._add_pos_embed = add_pos_embed
    self._pos_embed_origin_shape = pos_embed_origin_shape
    self._pos_embed_target_shape = pos_embed_target_shape
    self._layer_scale_init_value = layer_scale_init_value
    self._transformer_partition_dims = transformer_partition_dims

  def build(self, input_shape):
    if self._add_pos_embed:
      self._pos_embed = AddPositionEmbs(
          posemb_init=tf_keras.initializers.RandomNormal(stddev=0.02),
          posemb_origin_shape=self._pos_embed_origin_shape,
          posemb_target_shape=self._pos_embed_target_shape,
          name='posembed_input')
    self._dropout = layers.Dropout(rate=self._dropout_rate)

    self._encoder_layers = []
    # Set layer norm epsilons to 1e-6 to be consistent with JAX implementation.
    # https://flax.readthedocs.io/en/latest/_autosummary/flax.deprecated.nn.LayerNorm.html
    for i in range(self._num_layers):
      encoder_layer = nn_blocks.TransformerEncoderBlock(
          inner_activation=activations.gelu,
          num_attention_heads=self._num_heads,
          inner_dim=self._mlp_dim,
          output_dropout=self._dropout_rate,
          attention_dropout=self._attention_dropout_rate,
          kernel_regularizer=self._kernel_regularizer,
          kernel_initializer=self._kernel_initializer,
          norm_first=True,
          stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate(
              self._init_stochastic_depth_rate, i + 1, self._num_layers),
          norm_epsilon=1e-6,
          layer_scale_init_value=self._layer_scale_init_value,
          transformer_partition_dims=self._transformer_partition_dims)
      self._encoder_layers.append(encoder_layer)
    self._norm = layers.LayerNormalization(epsilon=1e-6)
    super().build(input_shape)

  def call(self, inputs, training=None):
    x = inputs
    if self._add_pos_embed:
      x = self._pos_embed(x, inputs_positions=self._inputs_positions)
    x = self._dropout(x, training=training)

    for encoder_layer in self._encoder_layers:
      x = encoder_layer(x, training=training)
    x = self._norm(x)
    return x

  def get_config(self):
    config = super().get_config()
    updates = {
        'num_layers': self._num_layers,
        'mlp_dim': self._mlp_dim,
        'num_heads': self._num_heads,
        'dropout_rate': self._dropout_rate,
        'attention_dropout_rate': self._attention_dropout_rate,
        'kernel_regularizer': self._kernel_regularizer,
        'inputs_positions': self._inputs_positions,
        'init_stochastic_depth_rate': self._init_stochastic_depth_rate,
        'kernel_initializer': self._kernel_initializer,
        'add_pos_embed': self._add_pos_embed,
        'pos_embed_origin_shape': self._pos_embed_origin_shape,
        'pos_embed_target_shape': self._pos_embed_target_shape,
        'layer_scale_init_value': self._layer_scale_init_value,
        'transformer_partition_dims': self._transformer_partition_dims,
    }
    config.update(updates)
    return config


class VisionTransformer(tf_keras.Model):
  """Class to build VisionTransformer family model."""

  def __init__(
      self,
      mlp_dim=3072,
      num_heads=12,
      num_layers=12,
      attention_dropout_rate=0.0,
      dropout_rate=0.1,
      init_stochastic_depth_rate=0.0,
      input_specs=layers.InputSpec(shape=[None, None, None, 3]),
      patch_size=16,
      hidden_size=768,
      representation_size=0,
      pooler='token',
      kernel_regularizer=None,
      original_init: bool = True,
      output_encoded_tokens: bool = True,
      output_2d_feature_maps: bool = False,
      pos_embed_shape: Optional[Tuple[int, int]] = None,
      layer_scale_init_value: float = 0.0,
      transformer_partition_dims: Optional[Tuple[int, int, int, int]] = None,
  ):
    """VisionTransformer initialization function."""
    self._mlp_dim = mlp_dim
    self._num_heads = num_heads
    self._num_layers = num_layers
    self._hidden_size = hidden_size
    self._patch_size = patch_size

    inputs = tf_keras.Input(shape=input_specs.shape[1:])

    x = layers.Conv2D(
        filters=hidden_size,
        kernel_size=patch_size,
        strides=patch_size,
        padding='valid',
        kernel_regularizer=kernel_regularizer,
        kernel_initializer='lecun_normal' if original_init else 'he_uniform')(
            inputs)
    if tf_keras.backend.image_data_format() == 'channels_last':
      rows_axis, cols_axis = (1, 2)
    else:
      rows_axis, cols_axis = (2, 3)
      # The reshape below assumes the data_format is 'channels_last,' so
      # transpose to that. Once the data is flattened by the reshape, the
      # data_format is irrelevant, so no need to update
      # tf_keras.backend.image_data_format.
      x = tf.transpose(x, perm=[0, 2, 3, 1])

    pos_embed_target_shape = (x.shape[rows_axis], x.shape[cols_axis])
    feat_h = input_specs.shape[rows_axis] // patch_size
    feat_w = input_specs.shape[cols_axis] // patch_size
    seq_len = feat_h * feat_w
    x = tf.reshape(x, [-1, seq_len, hidden_size])

    # If we want to add a class token, add it here.
    if pooler == 'token':
      x = TokenLayer(name='cls')(x)

    x = Encoder(
        num_layers=num_layers,
        mlp_dim=mlp_dim,
        num_heads=num_heads,
        dropout_rate=dropout_rate,
        attention_dropout_rate=attention_dropout_rate,
        kernel_regularizer=kernel_regularizer,
        kernel_initializer='glorot_uniform' if original_init else dict(
            class_name='TruncatedNormal', config=dict(stddev=.02)),
        init_stochastic_depth_rate=init_stochastic_depth_rate,
        pos_embed_origin_shape=pos_embed_shape,
        pos_embed_target_shape=pos_embed_target_shape,
        layer_scale_init_value=layer_scale_init_value)(
            x)

    if pooler == 'token':
      output_feature = x[:, 1:]
      x = x[:, 0]
    elif pooler == 'gap':
      output_feature = x
      x = tf.reduce_mean(x, axis=1)
    elif pooler == 'none':
      output_feature = x
      x = tf.identity(x, name='encoded_tokens')
    else:
      raise ValueError(f'unrecognized pooler type: {pooler}')

    endpoints = {}
    if output_2d_feature_maps:
      # Use the closest feature level.
      feat_level = round(math.log2(patch_size))
      logging.info(
          'VisionTransformer patch size %d and feature level: %d',
          patch_size,
          feat_level,
      )
      endpoints[str(feat_level)] = tf.reshape(
          output_feature, [-1, feat_h, feat_w, x.shape.as_list()[-1]])

      # Don"t include `pre_logits` or `encoded_tokens` to support decoders.
      self._output_specs = {k: v.shape for k, v in endpoints.items()}

    if representation_size:
      x = layers.Dense(
          representation_size,
          kernel_regularizer=kernel_regularizer,
          name='pre_logits',
          kernel_initializer='lecun_normal' if original_init else 'he_uniform',
      )(x)
      x = tf.nn.tanh(x)
    else:
      x = tf.identity(x, name='pre_logits')

    if pooler == 'none':
      if output_encoded_tokens:
        endpoints['encoded_tokens'] = x
    else:
      endpoints['pre_logits'] = tf.reshape(
          x, [-1, 1, 1, representation_size or hidden_size])

    super().__init__(inputs=inputs, outputs=endpoints)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs


@factory.register_backbone_builder('vit')
def build_vit(input_specs,
              backbone_config,
              norm_activation_config,
              l2_regularizer=None):
  """Build ViT model."""
  del norm_activation_config
  backbone_type = backbone_config.type
  backbone_cfg = backbone_config.get()
  assert backbone_type == 'vit', (f'Inconsistent backbone type '
                                  f'{backbone_type}')
  backbone_cfg.override(VIT_SPECS[backbone_cfg.model_name])
  logging.info(
      (
          'ViT specs: mlp_dim=%d, num_heads=%d, num_layers=%d,'
          'patch_size=%d, hidden_size=%d, representation_size=%d.'
      ),
      backbone_cfg.transformer.mlp_dim,
      backbone_cfg.transformer.num_heads,
      backbone_cfg.transformer.num_layers,
      backbone_cfg.patch_size,
      backbone_cfg.hidden_size,
      backbone_cfg.representation_size,
  )

  return VisionTransformer(
      mlp_dim=backbone_cfg.transformer.mlp_dim,
      num_heads=backbone_cfg.transformer.num_heads,
      num_layers=backbone_cfg.transformer.num_layers,
      attention_dropout_rate=backbone_cfg.transformer.attention_dropout_rate,
      dropout_rate=backbone_cfg.transformer.dropout_rate,
      init_stochastic_depth_rate=backbone_cfg.init_stochastic_depth_rate,
      input_specs=input_specs,
      patch_size=backbone_cfg.patch_size,
      hidden_size=backbone_cfg.hidden_size,
      representation_size=backbone_cfg.representation_size,
      pooler=backbone_cfg.pooler,
      kernel_regularizer=l2_regularizer,
      original_init=backbone_cfg.original_init,
      output_encoded_tokens=backbone_cfg.output_encoded_tokens,
      output_2d_feature_maps=backbone_cfg.output_2d_feature_maps,
      layer_scale_init_value=backbone_cfg.layer_scale_init_value,
      pos_embed_shape=backbone_cfg.pos_embed_shape,
      transformer_partition_dims=backbone_cfg.transformer_partition_dims)