Spaces:
Runtime error
Runtime error
File size: 14,438 Bytes
5672777 93528c6 5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VisionTransformer models."""
import math
from typing import Optional, Tuple
from absl import logging
import tensorflow as tf, tf_keras
from official.modeling import activations
from official.vision.modeling.backbones import factory
from official.vision.modeling.backbones.vit_specs import VIT_SPECS
from official.vision.modeling.layers import nn_blocks
from official.vision.modeling.layers import nn_layers
layers = tf_keras.layers
class AddPositionEmbs(layers.Layer):
"""Adds (optionally learned) positional embeddings to the inputs."""
def __init__(self,
posemb_init: Optional[tf_keras.initializers.Initializer] = None,
posemb_origin_shape: Optional[Tuple[int, int]] = None,
posemb_target_shape: Optional[Tuple[int, int]] = None,
**kwargs):
"""Constructs Positional Embedding module.
The logic of this module is: the learnable positional embeddings length will
be determined by the inputs_shape or posemb_origin_shape (if provided)
during the construction. If the posemb_target_shape is provided and is
different from the positional embeddings length, the embeddings will be
interpolated during the forward call.
Args:
posemb_init: The positional embedding initializer.
posemb_origin_shape: The intended positional embedding shape.
posemb_target_shape: The potential target shape positional embedding may
be interpolated to.
**kwargs: other args.
"""
super().__init__(**kwargs)
self.posemb_init = posemb_init
self.posemb_origin_shape = posemb_origin_shape
self.posemb_target_shape = posemb_target_shape
def build(self, inputs_shape):
if self.posemb_origin_shape is not None:
pos_emb_length = self.posemb_origin_shape[0] * self.posemb_origin_shape[1]
else:
pos_emb_length = inputs_shape[1]
pos_emb_shape = (1, pos_emb_length, inputs_shape[2])
self.pos_embedding = self.add_weight(
'pos_embedding', pos_emb_shape, initializer=self.posemb_init)
def _interpolate(self, pos_embedding: tf.Tensor, from_shape: Tuple[int, int],
to_shape: Tuple[int, int]) -> tf.Tensor:
"""Interpolates the positional embeddings."""
logging.info('Interpolating postional embedding from length: %s to %s',
from_shape, to_shape)
grid_emb = tf.reshape(pos_embedding, [1] + list(from_shape) + [-1])
# NOTE: Using BILINEAR interpolation by default.
grid_emb = tf.image.resize(grid_emb, to_shape)
return tf.reshape(grid_emb, [1, to_shape[0] * to_shape[1], -1])
def call(self, inputs, inputs_positions=None):
del inputs_positions
pos_embedding = self.pos_embedding
# inputs.shape is (batch_size, seq_len, emb_dim).
if inputs.shape[1] != pos_embedding.shape[1]:
pos_embedding = self._interpolate(
pos_embedding,
from_shape=self.posemb_origin_shape,
to_shape=self.posemb_target_shape)
pos_embedding = tf.cast(pos_embedding, inputs.dtype)
return inputs + pos_embedding
class TokenLayer(layers.Layer):
"""A simple layer to wrap token parameters."""
def build(self, inputs_shape):
self.cls = self.add_weight(
'cls', (1, 1, inputs_shape[-1]), initializer='zeros')
def call(self, inputs):
cls = tf.cast(self.cls, inputs.dtype)
cls = cls + tf.zeros_like(inputs[:, 0:1]) # A hacky way to tile.
x = tf.concat([cls, inputs], axis=1)
return x
class Encoder(layers.Layer):
"""Transformer Encoder."""
def __init__(self,
num_layers,
mlp_dim,
num_heads,
dropout_rate=0.1,
attention_dropout_rate=0.1,
kernel_regularizer=None,
inputs_positions=None,
init_stochastic_depth_rate=0.0,
kernel_initializer='glorot_uniform',
add_pos_embed=True,
pos_embed_origin_shape=None,
pos_embed_target_shape=None,
layer_scale_init_value=0.0,
transformer_partition_dims=None,
**kwargs):
super().__init__(**kwargs)
self._num_layers = num_layers
self._mlp_dim = mlp_dim
self._num_heads = num_heads
self._dropout_rate = dropout_rate
self._attention_dropout_rate = attention_dropout_rate
self._kernel_regularizer = kernel_regularizer
self._inputs_positions = inputs_positions
self._init_stochastic_depth_rate = init_stochastic_depth_rate
self._kernel_initializer = kernel_initializer
self._add_pos_embed = add_pos_embed
self._pos_embed_origin_shape = pos_embed_origin_shape
self._pos_embed_target_shape = pos_embed_target_shape
self._layer_scale_init_value = layer_scale_init_value
self._transformer_partition_dims = transformer_partition_dims
def build(self, input_shape):
if self._add_pos_embed:
self._pos_embed = AddPositionEmbs(
posemb_init=tf_keras.initializers.RandomNormal(stddev=0.02),
posemb_origin_shape=self._pos_embed_origin_shape,
posemb_target_shape=self._pos_embed_target_shape,
name='posembed_input')
self._dropout = layers.Dropout(rate=self._dropout_rate)
self._encoder_layers = []
# Set layer norm epsilons to 1e-6 to be consistent with JAX implementation.
# https://flax.readthedocs.io/en/latest/_autosummary/flax.deprecated.nn.LayerNorm.html
for i in range(self._num_layers):
encoder_layer = nn_blocks.TransformerEncoderBlock(
inner_activation=activations.gelu,
num_attention_heads=self._num_heads,
inner_dim=self._mlp_dim,
output_dropout=self._dropout_rate,
attention_dropout=self._attention_dropout_rate,
kernel_regularizer=self._kernel_regularizer,
kernel_initializer=self._kernel_initializer,
norm_first=True,
stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate(
self._init_stochastic_depth_rate, i + 1, self._num_layers),
norm_epsilon=1e-6,
layer_scale_init_value=self._layer_scale_init_value,
transformer_partition_dims=self._transformer_partition_dims)
self._encoder_layers.append(encoder_layer)
self._norm = layers.LayerNormalization(epsilon=1e-6)
super().build(input_shape)
def call(self, inputs, training=None):
x = inputs
if self._add_pos_embed:
x = self._pos_embed(x, inputs_positions=self._inputs_positions)
x = self._dropout(x, training=training)
for encoder_layer in self._encoder_layers:
x = encoder_layer(x, training=training)
x = self._norm(x)
return x
def get_config(self):
config = super().get_config()
updates = {
'num_layers': self._num_layers,
'mlp_dim': self._mlp_dim,
'num_heads': self._num_heads,
'dropout_rate': self._dropout_rate,
'attention_dropout_rate': self._attention_dropout_rate,
'kernel_regularizer': self._kernel_regularizer,
'inputs_positions': self._inputs_positions,
'init_stochastic_depth_rate': self._init_stochastic_depth_rate,
'kernel_initializer': self._kernel_initializer,
'add_pos_embed': self._add_pos_embed,
'pos_embed_origin_shape': self._pos_embed_origin_shape,
'pos_embed_target_shape': self._pos_embed_target_shape,
'layer_scale_init_value': self._layer_scale_init_value,
'transformer_partition_dims': self._transformer_partition_dims,
}
config.update(updates)
return config
class VisionTransformer(tf_keras.Model):
"""Class to build VisionTransformer family model."""
def __init__(
self,
mlp_dim=3072,
num_heads=12,
num_layers=12,
attention_dropout_rate=0.0,
dropout_rate=0.1,
init_stochastic_depth_rate=0.0,
input_specs=layers.InputSpec(shape=[None, None, None, 3]),
patch_size=16,
hidden_size=768,
representation_size=0,
pooler='token',
kernel_regularizer=None,
original_init: bool = True,
output_encoded_tokens: bool = True,
output_2d_feature_maps: bool = False,
pos_embed_shape: Optional[Tuple[int, int]] = None,
layer_scale_init_value: float = 0.0,
transformer_partition_dims: Optional[Tuple[int, int, int, int]] = None,
):
"""VisionTransformer initialization function."""
self._mlp_dim = mlp_dim
self._num_heads = num_heads
self._num_layers = num_layers
self._hidden_size = hidden_size
self._patch_size = patch_size
inputs = tf_keras.Input(shape=input_specs.shape[1:])
x = layers.Conv2D(
filters=hidden_size,
kernel_size=patch_size,
strides=patch_size,
padding='valid',
kernel_regularizer=kernel_regularizer,
kernel_initializer='lecun_normal' if original_init else 'he_uniform')(
inputs)
if tf_keras.backend.image_data_format() == 'channels_last':
rows_axis, cols_axis = (1, 2)
else:
rows_axis, cols_axis = (2, 3)
# The reshape below assumes the data_format is 'channels_last,' so
# transpose to that. Once the data is flattened by the reshape, the
# data_format is irrelevant, so no need to update
# tf_keras.backend.image_data_format.
x = tf.transpose(x, perm=[0, 2, 3, 1])
pos_embed_target_shape = (x.shape[rows_axis], x.shape[cols_axis])
feat_h = input_specs.shape[rows_axis] // patch_size
feat_w = input_specs.shape[cols_axis] // patch_size
seq_len = feat_h * feat_w
x = tf.reshape(x, [-1, seq_len, hidden_size])
# If we want to add a class token, add it here.
if pooler == 'token':
x = TokenLayer(name='cls')(x)
x = Encoder(
num_layers=num_layers,
mlp_dim=mlp_dim,
num_heads=num_heads,
dropout_rate=dropout_rate,
attention_dropout_rate=attention_dropout_rate,
kernel_regularizer=kernel_regularizer,
kernel_initializer='glorot_uniform' if original_init else dict(
class_name='TruncatedNormal', config=dict(stddev=.02)),
init_stochastic_depth_rate=init_stochastic_depth_rate,
pos_embed_origin_shape=pos_embed_shape,
pos_embed_target_shape=pos_embed_target_shape,
layer_scale_init_value=layer_scale_init_value)(
x)
if pooler == 'token':
output_feature = x[:, 1:]
x = x[:, 0]
elif pooler == 'gap':
output_feature = x
x = tf.reduce_mean(x, axis=1)
elif pooler == 'none':
output_feature = x
x = tf.identity(x, name='encoded_tokens')
else:
raise ValueError(f'unrecognized pooler type: {pooler}')
endpoints = {}
if output_2d_feature_maps:
# Use the closest feature level.
feat_level = round(math.log2(patch_size))
logging.info(
'VisionTransformer patch size %d and feature level: %d',
patch_size,
feat_level,
)
endpoints[str(feat_level)] = tf.reshape(
output_feature, [-1, feat_h, feat_w, x.shape.as_list()[-1]])
# Don"t include `pre_logits` or `encoded_tokens` to support decoders.
self._output_specs = {k: v.shape for k, v in endpoints.items()}
if representation_size:
x = layers.Dense(
representation_size,
kernel_regularizer=kernel_regularizer,
name='pre_logits',
kernel_initializer='lecun_normal' if original_init else 'he_uniform',
)(x)
x = tf.nn.tanh(x)
else:
x = tf.identity(x, name='pre_logits')
if pooler == 'none':
if output_encoded_tokens:
endpoints['encoded_tokens'] = x
else:
endpoints['pre_logits'] = tf.reshape(
x, [-1, 1, 1, representation_size or hidden_size])
super().__init__(inputs=inputs, outputs=endpoints)
@property
def output_specs(self):
"""A dict of {level: TensorShape} pairs for the model output."""
return self._output_specs
@factory.register_backbone_builder('vit')
def build_vit(input_specs,
backbone_config,
norm_activation_config,
l2_regularizer=None):
"""Build ViT model."""
del norm_activation_config
backbone_type = backbone_config.type
backbone_cfg = backbone_config.get()
assert backbone_type == 'vit', (f'Inconsistent backbone type '
f'{backbone_type}')
backbone_cfg.override(VIT_SPECS[backbone_cfg.model_name])
logging.info(
(
'ViT specs: mlp_dim=%d, num_heads=%d, num_layers=%d,'
'patch_size=%d, hidden_size=%d, representation_size=%d.'
),
backbone_cfg.transformer.mlp_dim,
backbone_cfg.transformer.num_heads,
backbone_cfg.transformer.num_layers,
backbone_cfg.patch_size,
backbone_cfg.hidden_size,
backbone_cfg.representation_size,
)
return VisionTransformer(
mlp_dim=backbone_cfg.transformer.mlp_dim,
num_heads=backbone_cfg.transformer.num_heads,
num_layers=backbone_cfg.transformer.num_layers,
attention_dropout_rate=backbone_cfg.transformer.attention_dropout_rate,
dropout_rate=backbone_cfg.transformer.dropout_rate,
init_stochastic_depth_rate=backbone_cfg.init_stochastic_depth_rate,
input_specs=input_specs,
patch_size=backbone_cfg.patch_size,
hidden_size=backbone_cfg.hidden_size,
representation_size=backbone_cfg.representation_size,
pooler=backbone_cfg.pooler,
kernel_regularizer=l2_regularizer,
original_init=backbone_cfg.original_init,
output_encoded_tokens=backbone_cfg.output_encoded_tokens,
output_2d_feature_maps=backbone_cfg.output_2d_feature_maps,
layer_scale_init_value=backbone_cfg.layer_scale_init_value,
pos_embed_shape=backbone_cfg.pos_embed_shape,
transformer_partition_dims=backbone_cfg.transformer_partition_dims)
|