Spaces:
Runtime error
Runtime error
File size: 18,657 Bytes
5672777 93528c6 5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions of 3D Residual Networks."""
from typing import Callable, List, Tuple, Optional
# Import libraries
import tensorflow as tf, tf_keras
from official.modeling import hyperparams
from official.modeling import tf_utils
from official.vision.modeling.backbones import factory
from official.vision.modeling.layers import nn_blocks_3d
from official.vision.modeling.layers import nn_layers
layers = tf_keras.layers
RESNET_SPECS = {
50: [
('bottleneck3d', 64, 3),
('bottleneck3d', 128, 4),
('bottleneck3d', 256, 6),
('bottleneck3d', 512, 3),
],
101: [
('bottleneck3d', 64, 3),
('bottleneck3d', 128, 4),
('bottleneck3d', 256, 23),
('bottleneck3d', 512, 3),
],
152: [
('bottleneck3d', 64, 3),
('bottleneck3d', 128, 8),
('bottleneck3d', 256, 36),
('bottleneck3d', 512, 3),
],
200: [
('bottleneck3d', 64, 3),
('bottleneck3d', 128, 24),
('bottleneck3d', 256, 36),
('bottleneck3d', 512, 3),
],
270: [
('bottleneck3d', 64, 4),
('bottleneck3d', 128, 29),
('bottleneck3d', 256, 53),
('bottleneck3d', 512, 4),
],
300: [
('bottleneck3d', 64, 4),
('bottleneck3d', 128, 36),
('bottleneck3d', 256, 54),
('bottleneck3d', 512, 4),
],
350: [
('bottleneck3d', 64, 4),
('bottleneck3d', 128, 36),
('bottleneck3d', 256, 72),
('bottleneck3d', 512, 4),
],
}
@tf_keras.utils.register_keras_serializable(package='Vision')
class ResNet3D(tf_keras.Model):
"""Creates a 3D ResNet family model."""
def __init__(
self,
model_id: int,
temporal_strides: List[int],
temporal_kernel_sizes: List[Tuple[int]],
use_self_gating: Optional[List[int]] = None,
input_specs: tf_keras.layers.InputSpec = layers.InputSpec(
shape=[None, None, None, None, 3]),
stem_type: str = 'v0',
stem_conv_temporal_kernel_size: int = 5,
stem_conv_temporal_stride: int = 2,
stem_pool_temporal_stride: int = 2,
init_stochastic_depth_rate: float = 0.0,
activation: str = 'relu',
se_ratio: Optional[float] = None,
use_sync_bn: bool = False,
norm_momentum: float = 0.99,
norm_epsilon: float = 0.001,
kernel_initializer: str = 'VarianceScaling',
kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
**kwargs):
"""Initializes a 3D ResNet model.
Args:
model_id: An `int` of depth of ResNet backbone model.
temporal_strides: A list of integers that specifies the temporal strides
for all 3d blocks.
temporal_kernel_sizes: A list of tuples that specifies the temporal kernel
sizes for all 3d blocks in different block groups.
use_self_gating: A list of booleans to specify applying self-gating module
or not in each block group. If None, self-gating is not applied.
input_specs: A `tf_keras.layers.InputSpec` of the input tensor.
stem_type: A `str` of stem type of ResNet. Default to `v0`. If set to
`v1`, use ResNet-D type stem (https://arxiv.org/abs/1812.01187).
stem_conv_temporal_kernel_size: An `int` of temporal kernel size for the
first conv layer.
stem_conv_temporal_stride: An `int` of temporal stride for the first conv
layer.
stem_pool_temporal_stride: An `int` of temporal stride for the first pool
layer.
init_stochastic_depth_rate: A `float` of initial stochastic depth rate.
activation: A `str` of name of the activation function.
se_ratio: A `float` or None. Ratio of the Squeeze-and-Excitation layer.
use_sync_bn: If True, use synchronized batch normalization.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
kernel_initializer: A str for kernel initializer of convolutional layers.
kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
Conv2D. Default to None.
bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2D.
Default to None.
**kwargs: Additional keyword arguments to be passed.
"""
self._model_id = model_id
self._temporal_strides = temporal_strides
self._temporal_kernel_sizes = temporal_kernel_sizes
self._input_specs = input_specs
self._stem_type = stem_type
self._stem_conv_temporal_kernel_size = stem_conv_temporal_kernel_size
self._stem_conv_temporal_stride = stem_conv_temporal_stride
self._stem_pool_temporal_stride = stem_pool_temporal_stride
self._use_self_gating = use_self_gating
self._se_ratio = se_ratio
self._init_stochastic_depth_rate = init_stochastic_depth_rate
self._use_sync_bn = use_sync_bn
self._activation = activation
self._norm_momentum = norm_momentum
self._norm_epsilon = norm_epsilon
self._norm = layers.BatchNormalization
self._kernel_initializer = kernel_initializer
self._kernel_regularizer = kernel_regularizer
self._bias_regularizer = bias_regularizer
if tf_keras.backend.image_data_format() == 'channels_last':
self._bn_axis = -1
else:
self._bn_axis = 1
# Build ResNet3D backbone.
inputs = tf_keras.Input(shape=input_specs.shape[1:])
endpoints = self._build_model(inputs)
self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}
super(ResNet3D, self).__init__(inputs=inputs, outputs=endpoints, **kwargs)
def _build_model(self, inputs):
"""Builds model architecture.
Args:
inputs: the keras input spec.
Returns:
endpoints: A dictionary of backbone endpoint features.
"""
# Build stem.
x = self._build_stem(inputs, stem_type=self._stem_type)
temporal_kernel_size = 1 if self._stem_pool_temporal_stride == 1 else 3
x = layers.MaxPool3D(
pool_size=[temporal_kernel_size, 3, 3],
strides=[self._stem_pool_temporal_stride, 2, 2],
padding='same')(x)
# Build intermediate blocks and endpoints.
resnet_specs = RESNET_SPECS[self._model_id]
if len(self._temporal_strides) != len(resnet_specs) or len(
self._temporal_kernel_sizes) != len(resnet_specs):
raise ValueError(
'Number of blocks in temporal specs should equal to resnet_specs.')
endpoints = {}
for i, resnet_spec in enumerate(resnet_specs):
if resnet_spec[0] == 'bottleneck3d':
block_fn = nn_blocks_3d.BottleneckBlock3D
else:
raise ValueError('Block fn `{}` is not supported.'.format(
resnet_spec[0]))
use_self_gating = (
self._use_self_gating[i] if self._use_self_gating else False)
x = self._block_group(
inputs=x,
filters=resnet_spec[1],
temporal_kernel_sizes=self._temporal_kernel_sizes[i],
temporal_strides=self._temporal_strides[i],
spatial_strides=(1 if i == 0 else 2),
block_fn=block_fn,
block_repeats=resnet_spec[2],
stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate(
self._init_stochastic_depth_rate, i + 2, 5),
use_self_gating=use_self_gating,
name='block_group_l{}'.format(i + 2))
endpoints[str(i + 2)] = x
return endpoints
def _build_stem(self, inputs, stem_type):
"""Builds stem layer."""
# Build stem.
if stem_type == 'v0':
x = layers.Conv3D(
filters=64,
kernel_size=[self._stem_conv_temporal_kernel_size, 7, 7],
strides=[self._stem_conv_temporal_stride, 2, 2],
use_bias=False,
padding='same',
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)(
inputs)
x = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
synchronized=self._use_sync_bn)(x)
x = tf_utils.get_activation(self._activation)(x)
elif stem_type == 'v1':
x = layers.Conv3D(
filters=32,
kernel_size=[self._stem_conv_temporal_kernel_size, 3, 3],
strides=[self._stem_conv_temporal_stride, 2, 2],
use_bias=False,
padding='same',
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)(
inputs)
x = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
synchronized=self._use_sync_bn)(x)
x = tf_utils.get_activation(self._activation)(x)
x = layers.Conv3D(
filters=32,
kernel_size=[1, 3, 3],
strides=[1, 1, 1],
use_bias=False,
padding='same',
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)(
x)
x = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
synchronized=self._use_sync_bn)(x)
x = tf_utils.get_activation(self._activation)(x)
x = layers.Conv3D(
filters=64,
kernel_size=[1, 3, 3],
strides=[1, 1, 1],
use_bias=False,
padding='same',
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer)(
x)
x = self._norm(
axis=self._bn_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
synchronized=self._use_sync_bn)(x)
x = tf_utils.get_activation(self._activation)(x)
else:
raise ValueError(f'Stem type {stem_type} not supported.')
return x
def _block_group(self,
inputs: tf.Tensor,
filters: int,
temporal_kernel_sizes: Tuple[int],
temporal_strides: int,
spatial_strides: int,
block_fn: Callable[
...,
tf_keras.layers.Layer] = nn_blocks_3d.BottleneckBlock3D,
block_repeats: int = 1,
stochastic_depth_drop_rate: float = 0.0,
use_self_gating: bool = False,
name: str = 'block_group'):
"""Creates one group of blocks for the ResNet3D model.
Args:
inputs: A `tf.Tensor` of size `[batch, channels, height, width]`.
filters: An `int` of number of filters for the first convolution of the
layer.
temporal_kernel_sizes: A tuple that specifies the temporal kernel sizes
for each block in the current group.
temporal_strides: An `int` of temporal strides for the first convolution
in this group.
spatial_strides: An `int` stride to use for the first convolution of the
layer. If greater than 1, this layer will downsample the input.
block_fn: Either `nn_blocks.ResidualBlock` or `nn_blocks.BottleneckBlock`.
block_repeats: An `int` of number of blocks contained in the layer.
stochastic_depth_drop_rate: A `float` of drop rate of the current block
group.
use_self_gating: A `bool` that specifies whether to apply self-gating
module or not.
name: A `str` name for the block.
Returns:
The output `tf.Tensor` of the block layer.
"""
if len(temporal_kernel_sizes) != block_repeats:
raise ValueError(
'Number of elements in `temporal_kernel_sizes` must equal to `block_repeats`.'
)
# Only apply self-gating module in the last block.
use_self_gating_list = [False] * (block_repeats - 1) + [use_self_gating]
x = block_fn(
filters=filters,
temporal_kernel_size=temporal_kernel_sizes[0],
temporal_strides=temporal_strides,
spatial_strides=spatial_strides,
stochastic_depth_drop_rate=stochastic_depth_drop_rate,
use_self_gating=use_self_gating_list[0],
se_ratio=self._se_ratio,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activation=self._activation,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon)(
inputs)
for i in range(1, block_repeats):
x = block_fn(
filters=filters,
temporal_kernel_size=temporal_kernel_sizes[i],
temporal_strides=1,
spatial_strides=1,
stochastic_depth_drop_rate=stochastic_depth_drop_rate,
use_self_gating=use_self_gating_list[i],
se_ratio=self._se_ratio,
kernel_initializer=self._kernel_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activation=self._activation,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon)(
x)
return tf.identity(x, name=name)
def get_config(self):
config_dict = {
'model_id': self._model_id,
'temporal_strides': self._temporal_strides,
'temporal_kernel_sizes': self._temporal_kernel_sizes,
'stem_type': self._stem_type,
'stem_conv_temporal_kernel_size': self._stem_conv_temporal_kernel_size,
'stem_conv_temporal_stride': self._stem_conv_temporal_stride,
'stem_pool_temporal_stride': self._stem_pool_temporal_stride,
'use_self_gating': self._use_self_gating,
'se_ratio': self._se_ratio,
'init_stochastic_depth_rate': self._init_stochastic_depth_rate,
'activation': self._activation,
'use_sync_bn': self._use_sync_bn,
'norm_momentum': self._norm_momentum,
'norm_epsilon': self._norm_epsilon,
'kernel_initializer': self._kernel_initializer,
'kernel_regularizer': self._kernel_regularizer,
'bias_regularizer': self._bias_regularizer,
}
return config_dict
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@property
def output_specs(self):
"""A dict of {level: TensorShape} pairs for the model output."""
return self._output_specs
@factory.register_backbone_builder('resnet_3d')
def build_resnet3d(
input_specs: tf_keras.layers.InputSpec,
backbone_config: hyperparams.Config,
norm_activation_config: hyperparams.Config,
l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None
) -> tf_keras.Model:
"""Builds ResNet 3d backbone from a config."""
backbone_cfg = backbone_config.get()
# Flatten configs before passing to the backbone.
temporal_strides = []
temporal_kernel_sizes = []
use_self_gating = []
for block_spec in backbone_cfg.block_specs:
temporal_strides.append(block_spec.temporal_strides)
temporal_kernel_sizes.append(block_spec.temporal_kernel_sizes)
use_self_gating.append(block_spec.use_self_gating)
return ResNet3D(
model_id=backbone_cfg.model_id,
temporal_strides=temporal_strides,
temporal_kernel_sizes=temporal_kernel_sizes,
use_self_gating=use_self_gating,
input_specs=input_specs,
stem_type=backbone_cfg.stem_type,
stem_conv_temporal_kernel_size=backbone_cfg
.stem_conv_temporal_kernel_size,
stem_conv_temporal_stride=backbone_cfg.stem_conv_temporal_stride,
stem_pool_temporal_stride=backbone_cfg.stem_pool_temporal_stride,
init_stochastic_depth_rate=backbone_cfg.stochastic_depth_drop_rate,
se_ratio=backbone_cfg.se_ratio,
activation=norm_activation_config.activation,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer)
@factory.register_backbone_builder('resnet_3d_rs')
def build_resnet3d_rs(
input_specs: tf_keras.layers.InputSpec,
backbone_config: hyperparams.Config,
norm_activation_config: hyperparams.Config,
l2_regularizer: Optional[tf_keras.regularizers.Regularizer] = None
) -> tf_keras.Model:
"""Builds ResNet-3D-RS backbone from a config."""
backbone_cfg = backbone_config.get()
# Flatten configs before passing to the backbone.
temporal_strides = []
temporal_kernel_sizes = []
use_self_gating = []
for i, block_spec in enumerate(backbone_cfg.block_specs):
temporal_strides.append(block_spec.temporal_strides)
use_self_gating.append(block_spec.use_self_gating)
block_repeats_i = RESNET_SPECS[backbone_cfg.model_id][i][-1]
temporal_kernel_sizes.append(list(block_spec.temporal_kernel_sizes) *
block_repeats_i)
return ResNet3D(
model_id=backbone_cfg.model_id,
temporal_strides=temporal_strides,
temporal_kernel_sizes=temporal_kernel_sizes,
use_self_gating=use_self_gating,
input_specs=input_specs,
stem_type=backbone_cfg.stem_type,
stem_conv_temporal_kernel_size=backbone_cfg
.stem_conv_temporal_kernel_size,
stem_conv_temporal_stride=backbone_cfg.stem_conv_temporal_stride,
stem_pool_temporal_stride=backbone_cfg.stem_pool_temporal_stride,
init_stochastic_depth_rate=backbone_cfg.stochastic_depth_drop_rate,
se_ratio=backbone_cfg.se_ratio,
activation=norm_activation_config.activation,
use_sync_bn=norm_activation_config.use_sync_bn,
norm_momentum=norm_activation_config.norm_momentum,
norm_epsilon=norm_activation_config.norm_epsilon,
kernel_regularizer=l2_regularizer)
|