Spaces:
Runtime error
Runtime error
File size: 24,236 Bytes
5672777 93528c6 5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""R-CNN(-RS) configuration definition."""
import dataclasses
import os
from typing import List, Optional, Sequence, Union
from official.core import config_definitions as cfg
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.configs import common
from official.vision.configs import decoders
from official.vision.configs import backbones
# pylint: disable=missing-class-docstring
@dataclasses.dataclass
class Parser(hyperparams.Config):
num_channels: int = 3
match_threshold: float = 0.5
unmatched_threshold: float = 0.5
aug_rand_hflip: bool = False
aug_rand_vflip: bool = False
aug_scale_min: float = 1.0
aug_scale_max: float = 1.0
aug_type: Optional[
common.Augmentation] = None # Choose from AutoAugment and RandAugment.
skip_crowd_during_training: bool = True
max_num_instances: int = 100
rpn_match_threshold: float = 0.7
rpn_unmatched_threshold: float = 0.3
rpn_batch_size_per_im: int = 256
rpn_fg_fraction: float = 0.5
mask_crop_size: int = 112
pad: bool = True # Only support `pad = True`.
keep_aspect_ratio: bool = True # Only support `keep_aspect_ratio = True`.
def __post_init__(self, *args, **kwargs):
"""Validates the configuration."""
if not self.pad:
raise ValueError('`maskrcnn.Parser` only supports `pad = True`.')
if not self.keep_aspect_ratio:
raise ValueError(
'`maskrcnn.Parser` only supports `keep_aspect_ratio = True`.'
)
super().__post_init__(*args, **kwargs)
@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
"""Input config for training."""
input_path: Union[Sequence[str], str, hyperparams.Config] = ''
weights: Optional[hyperparams.Config] = None
global_batch_size: int = 0
is_training: bool = False
dtype: str = 'bfloat16'
decoder: common.DataDecoder = dataclasses.field(
default_factory=common.DataDecoder
)
parser: Parser = dataclasses.field(default_factory=Parser)
shuffle_buffer_size: int = 10000
file_type: str = 'tfrecord'
drop_remainder: bool = True
# Number of examples in the data set, it's used to create the annotation file.
num_examples: int = -1
@dataclasses.dataclass
class Anchor(hyperparams.Config):
num_scales: int = 1
aspect_ratios: List[float] = dataclasses.field(
default_factory=lambda: [0.5, 1.0, 2.0])
anchor_size: float = 8.0
@dataclasses.dataclass
class RPNHead(hyperparams.Config):
num_convs: int = 1
num_filters: int = 256
use_separable_conv: bool = False
@dataclasses.dataclass
class DetectionHead(hyperparams.Config):
num_convs: int = 4
num_filters: int = 256
use_separable_conv: bool = False
num_fcs: int = 1
fc_dims: int = 1024
class_agnostic_bbox_pred: bool = False # Has to be True for Cascade RCNN.
# If additional IoUs are passed in 'cascade_iou_thresholds'
# then ensemble the class probabilities from all heads.
cascade_class_ensemble: bool = False
@dataclasses.dataclass
class ROIGenerator(hyperparams.Config):
pre_nms_top_k: int = 2000
pre_nms_score_threshold: float = 0.0
pre_nms_min_size_threshold: float = 0.0
nms_iou_threshold: float = 0.7
num_proposals: int = 1000
test_pre_nms_top_k: int = 1000
test_pre_nms_score_threshold: float = 0.0
test_pre_nms_min_size_threshold: float = 0.0
test_nms_iou_threshold: float = 0.7
test_num_proposals: int = 1000
use_batched_nms: bool = False
@dataclasses.dataclass
class ROISampler(hyperparams.Config):
mix_gt_boxes: bool = True
num_sampled_rois: int = 512
foreground_fraction: float = 0.25
foreground_iou_threshold: float = 0.5
background_iou_high_threshold: float = 0.5
background_iou_low_threshold: float = 0.0
# IoU thresholds for additional FRCNN heads in Cascade mode.
# `foreground_iou_threshold` is the first threshold.
cascade_iou_thresholds: Optional[List[float]] = None
@dataclasses.dataclass
class ROIAligner(hyperparams.Config):
crop_size: int = 7
sample_offset: float = 0.5
@dataclasses.dataclass
class DetectionGenerator(hyperparams.Config):
apply_nms: bool = True
pre_nms_top_k: int = 5000
pre_nms_score_threshold: float = 0.05
nms_iou_threshold: float = 0.5
max_num_detections: int = 100
nms_version: str = 'v2' # `v2`, `v1`, `batched`
use_cpu_nms: bool = False
soft_nms_sigma: Optional[float] = None # Only works when nms_version='v1'.
use_sigmoid_probability: bool = False
@dataclasses.dataclass
class MaskHead(hyperparams.Config):
upsample_factor: int = 2
num_convs: int = 4
num_filters: int = 256
use_separable_conv: bool = False
class_agnostic: bool = False
@dataclasses.dataclass
class MaskSampler(hyperparams.Config):
num_sampled_masks: int = 128
@dataclasses.dataclass
class MaskROIAligner(hyperparams.Config):
crop_size: int = 14
sample_offset: float = 0.5
@dataclasses.dataclass
class MaskRCNN(hyperparams.Config):
num_classes: int = 0
input_size: List[int] = dataclasses.field(default_factory=list)
min_level: int = 2
max_level: int = 6
anchor: Anchor = dataclasses.field(default_factory=Anchor)
include_mask: bool = True
outer_boxes_scale: float = 1.0
backbone: backbones.Backbone = dataclasses.field(
default_factory=lambda: backbones.Backbone(
type='resnet', resnet=backbones.ResNet()
)
)
decoder: decoders.Decoder = dataclasses.field(
default_factory=lambda: decoders.Decoder(type='fpn', fpn=decoders.FPN())
)
rpn_head: RPNHead = dataclasses.field(default_factory=RPNHead)
detection_head: DetectionHead = dataclasses.field(
default_factory=DetectionHead
)
roi_generator: ROIGenerator = dataclasses.field(default_factory=ROIGenerator)
roi_sampler: ROISampler = dataclasses.field(default_factory=ROISampler)
roi_aligner: ROIAligner = dataclasses.field(default_factory=ROIAligner)
detection_generator: DetectionGenerator = dataclasses.field(
default_factory=DetectionGenerator
)
mask_head: Optional[MaskHead] = dataclasses.field(default_factory=MaskHead)
mask_sampler: Optional[MaskSampler] = dataclasses.field(
default_factory=MaskSampler
)
mask_roi_aligner: Optional[MaskROIAligner] = dataclasses.field(
default_factory=MaskROIAligner
)
norm_activation: common.NormActivation = dataclasses.field(
default_factory=lambda: common.NormActivation( # pylint: disable=g-long-lambda
norm_momentum=0.997, norm_epsilon=0.0001, use_sync_bn=True
)
)
@dataclasses.dataclass
class Losses(hyperparams.Config):
loss_weight: float = 1.0
rpn_huber_loss_delta: float = 1. / 9.
frcnn_huber_loss_delta: float = 1.
frcnn_class_use_binary_cross_entropy: bool = False
frcnn_class_loss_top_k_percent: float = 1.
l2_weight_decay: float = 0.0
rpn_score_weight: float = 1.0
rpn_box_weight: float = 1.0
frcnn_class_weight: float = 1.0
frcnn_box_weight: float = 1.0
mask_weight: float = 1.0
class_weights: Optional[List[float]] = None
@dataclasses.dataclass
class MaskRCNNTask(cfg.TaskConfig):
model: MaskRCNN = dataclasses.field(default_factory=MaskRCNN)
train_data: DataConfig = dataclasses.field(
default_factory=lambda: DataConfig(is_training=True)
)
validation_data: DataConfig = dataclasses.field(
default_factory=lambda: DataConfig( # pylint: disable=g-long-lambda
is_training=False, drop_remainder=False
)
)
losses: Losses = dataclasses.field(default_factory=Losses)
init_checkpoint: Optional[str] = None
init_checkpoint_modules: Union[
str, List[str]] = 'all' # all, backbone, and/or decoder
annotation_file: Optional[str] = None
per_category_metrics: bool = False
# If set, we only use masks for the specified class IDs.
allowed_mask_class_ids: Optional[List[int]] = None
# If set, the COCO metrics will be computed.
use_coco_metrics: bool = True
# If set, the Waymo Open Dataset evaluator would be used.
use_wod_metrics: bool = False
# If set, use instance metrics (AP, mask AP, etc.) computed by an efficient
# approximation algorithm with TPU compatible operations.
use_approx_instance_metrics: bool = False
# If set, freezes the backbone during training.
# TODO(crisnv) Add paper link when available.
freeze_backbone: bool = False
COCO_INPUT_PATH_BASE = 'coco'
@exp_factory.register_config_factory('fasterrcnn_resnetfpn_coco')
def fasterrcnn_resnetfpn_coco() -> cfg.ExperimentConfig:
"""COCO object detection with Faster R-CNN."""
steps_per_epoch = 500
coco_val_samples = 5000
train_batch_size = 64
eval_batch_size = 8
config = cfg.ExperimentConfig(
runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
task=MaskRCNNTask(
init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/resnet50_imagenet/ckpt-28080',
init_checkpoint_modules='backbone',
annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
'instances_val2017.json'),
model=MaskRCNN(
num_classes=91,
input_size=[1024, 1024, 3],
include_mask=False,
mask_head=None,
mask_sampler=None,
mask_roi_aligner=None),
losses=Losses(l2_weight_decay=0.00004),
train_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
is_training=True,
global_batch_size=train_batch_size,
parser=Parser(
aug_rand_hflip=True, aug_scale_min=0.8, aug_scale_max=1.25)),
validation_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
is_training=False,
global_batch_size=eval_batch_size,
drop_remainder=False)),
trainer=cfg.TrainerConfig(
train_steps=22500,
validation_steps=coco_val_samples // eval_batch_size,
validation_interval=steps_per_epoch,
steps_per_loop=steps_per_epoch,
summary_interval=steps_per_epoch,
checkpoint_interval=steps_per_epoch,
optimizer_config=optimization.OptimizationConfig({
'optimizer': {
'type': 'sgd',
'sgd': {
'momentum': 0.9
}
},
'learning_rate': {
'type': 'stepwise',
'stepwise': {
'boundaries': [15000, 20000],
'values': [0.12, 0.012, 0.0012],
}
},
'warmup': {
'type': 'linear',
'linear': {
'warmup_steps': 500,
'warmup_learning_rate': 0.0067
}
}
})),
restrictions=[
'task.train_data.is_training != None',
'task.validation_data.is_training != None'
])
return config
@exp_factory.register_config_factory('maskrcnn_resnetfpn_coco')
def maskrcnn_resnetfpn_coco() -> cfg.ExperimentConfig:
"""COCO object detection with Mask R-CNN."""
steps_per_epoch = 500
coco_val_samples = 5000
train_batch_size = 64
eval_batch_size = 8
config = cfg.ExperimentConfig(
runtime=cfg.RuntimeConfig(
mixed_precision_dtype='bfloat16', enable_xla=True),
task=MaskRCNNTask(
init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/resnet50_imagenet/ckpt-28080',
init_checkpoint_modules='backbone',
annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
'instances_val2017.json'),
model=MaskRCNN(
num_classes=91, input_size=[1024, 1024, 3], include_mask=True),
losses=Losses(l2_weight_decay=0.00004),
train_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
is_training=True,
global_batch_size=train_batch_size,
parser=Parser(
aug_rand_hflip=True, aug_scale_min=0.8, aug_scale_max=1.25)),
validation_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
is_training=False,
global_batch_size=eval_batch_size,
drop_remainder=False)),
trainer=cfg.TrainerConfig(
train_steps=22500,
validation_steps=coco_val_samples // eval_batch_size,
validation_interval=steps_per_epoch,
steps_per_loop=steps_per_epoch,
summary_interval=steps_per_epoch,
checkpoint_interval=steps_per_epoch,
optimizer_config=optimization.OptimizationConfig({
'optimizer': {
'type': 'sgd',
'sgd': {
'momentum': 0.9
}
},
'learning_rate': {
'type': 'stepwise',
'stepwise': {
'boundaries': [15000, 20000],
'values': [0.12, 0.012, 0.0012],
}
},
'warmup': {
'type': 'linear',
'linear': {
'warmup_steps': 500,
'warmup_learning_rate': 0.0067
}
}
})),
restrictions=[
'task.train_data.is_training != None',
'task.validation_data.is_training != None'
])
return config
@exp_factory.register_config_factory('maskrcnn_spinenet_coco')
def maskrcnn_spinenet_coco() -> cfg.ExperimentConfig:
"""COCO object detection with Mask R-CNN with SpineNet backbone."""
steps_per_epoch = 463
coco_val_samples = 5000
train_batch_size = 256
eval_batch_size = 8
config = cfg.ExperimentConfig(
runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
task=MaskRCNNTask(
annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
'instances_val2017.json'),
model=MaskRCNN(
backbone=backbones.Backbone(
type='spinenet',
spinenet=backbones.SpineNet(
model_id='49',
min_level=3,
max_level=7,
)),
decoder=decoders.Decoder(
type='identity', identity=decoders.Identity()),
anchor=Anchor(anchor_size=3),
norm_activation=common.NormActivation(use_sync_bn=True),
num_classes=91,
input_size=[640, 640, 3],
min_level=3,
max_level=7,
include_mask=True),
losses=Losses(l2_weight_decay=0.00004),
train_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
is_training=True,
global_batch_size=train_batch_size,
parser=Parser(
aug_rand_hflip=True, aug_scale_min=0.5, aug_scale_max=2.0)),
validation_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
is_training=False,
global_batch_size=eval_batch_size,
drop_remainder=False)),
trainer=cfg.TrainerConfig(
train_steps=steps_per_epoch * 350,
validation_steps=coco_val_samples // eval_batch_size,
validation_interval=steps_per_epoch,
steps_per_loop=steps_per_epoch,
summary_interval=steps_per_epoch,
checkpoint_interval=steps_per_epoch,
optimizer_config=optimization.OptimizationConfig({
'optimizer': {
'type': 'sgd',
'sgd': {
'momentum': 0.9
}
},
'learning_rate': {
'type': 'stepwise',
'stepwise': {
'boundaries': [
steps_per_epoch * 320, steps_per_epoch * 340
],
'values': [0.32, 0.032, 0.0032],
}
},
'warmup': {
'type': 'linear',
'linear': {
'warmup_steps': 2000,
'warmup_learning_rate': 0.0067
}
}
})),
restrictions=[
'task.train_data.is_training != None',
'task.validation_data.is_training != None',
'task.model.min_level == task.model.backbone.spinenet.min_level',
'task.model.max_level == task.model.backbone.spinenet.max_level',
])
return config
@exp_factory.register_config_factory('cascadercnn_spinenet_coco')
def cascadercnn_spinenet_coco() -> cfg.ExperimentConfig:
"""COCO object detection with Cascade RCNN-RS with SpineNet backbone."""
steps_per_epoch = 463
coco_val_samples = 5000
train_batch_size = 256
eval_batch_size = 8
config = cfg.ExperimentConfig(
runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
task=MaskRCNNTask(
annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
'instances_val2017.json'),
model=MaskRCNN(
backbone=backbones.Backbone(
type='spinenet',
spinenet=backbones.SpineNet(
model_id='49',
min_level=3,
max_level=7,
)),
decoder=decoders.Decoder(
type='identity', identity=decoders.Identity()),
roi_sampler=ROISampler(cascade_iou_thresholds=[0.6, 0.7]),
detection_head=DetectionHead(
class_agnostic_bbox_pred=True, cascade_class_ensemble=True),
anchor=Anchor(anchor_size=3),
norm_activation=common.NormActivation(
use_sync_bn=True, activation='swish'),
num_classes=91,
input_size=[640, 640, 3],
min_level=3,
max_level=7,
include_mask=True),
losses=Losses(l2_weight_decay=0.00004),
train_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
is_training=True,
global_batch_size=train_batch_size,
parser=Parser(
aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.5)),
validation_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
is_training=False,
global_batch_size=eval_batch_size,
drop_remainder=False)),
trainer=cfg.TrainerConfig(
train_steps=steps_per_epoch * 500,
validation_steps=coco_val_samples // eval_batch_size,
validation_interval=steps_per_epoch,
steps_per_loop=steps_per_epoch,
summary_interval=steps_per_epoch,
checkpoint_interval=steps_per_epoch,
optimizer_config=optimization.OptimizationConfig({
'optimizer': {
'type': 'sgd',
'sgd': {
'momentum': 0.9
}
},
'learning_rate': {
'type': 'stepwise',
'stepwise': {
'boundaries': [
steps_per_epoch * 475, steps_per_epoch * 490
],
'values': [0.32, 0.032, 0.0032],
}
},
'warmup': {
'type': 'linear',
'linear': {
'warmup_steps': 2000,
'warmup_learning_rate': 0.0067
}
}
})),
restrictions=[
'task.train_data.is_training != None',
'task.validation_data.is_training != None',
'task.model.min_level == task.model.backbone.spinenet.min_level',
'task.model.max_level == task.model.backbone.spinenet.max_level',
])
return config
@exp_factory.register_config_factory('maskrcnn_mobilenet_coco')
def maskrcnn_mobilenet_coco() -> cfg.ExperimentConfig:
"""COCO object detection with Mask R-CNN with MobileNet backbone."""
steps_per_epoch = 232
coco_val_samples = 5000
train_batch_size = 512
eval_batch_size = 512
config = cfg.ExperimentConfig(
runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
task=MaskRCNNTask(
annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
'instances_val2017.json'),
model=MaskRCNN(
backbone=backbones.Backbone(
type='mobilenet',
mobilenet=backbones.MobileNet(model_id='MobileNetV2')),
decoder=decoders.Decoder(
type='fpn',
fpn=decoders.FPN(num_filters=128, use_separable_conv=True)),
rpn_head=RPNHead(use_separable_conv=True,
num_filters=128), # 1/2 of original channels.
detection_head=DetectionHead(
use_separable_conv=True, num_filters=128,
fc_dims=512), # 1/2 of original channels.
mask_head=MaskHead(use_separable_conv=True,
num_filters=128), # 1/2 of original channels.
anchor=Anchor(anchor_size=3),
norm_activation=common.NormActivation(
activation='relu6',
norm_momentum=0.99,
norm_epsilon=0.001,
use_sync_bn=True),
num_classes=91,
input_size=[512, 512, 3],
min_level=3,
max_level=6,
include_mask=True),
losses=Losses(l2_weight_decay=0.00004),
train_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
is_training=True,
global_batch_size=train_batch_size,
parser=Parser(
aug_rand_hflip=True, aug_scale_min=0.5, aug_scale_max=2.0)),
validation_data=DataConfig(
input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
is_training=False,
global_batch_size=eval_batch_size,
drop_remainder=False)),
trainer=cfg.TrainerConfig(
train_steps=steps_per_epoch * 350,
validation_steps=coco_val_samples // eval_batch_size,
validation_interval=steps_per_epoch,
steps_per_loop=steps_per_epoch,
summary_interval=steps_per_epoch,
checkpoint_interval=steps_per_epoch,
optimizer_config=optimization.OptimizationConfig({
'optimizer': {
'type': 'sgd',
'sgd': {
'momentum': 0.9
}
},
'learning_rate': {
'type': 'stepwise',
'stepwise': {
'boundaries': [
steps_per_epoch * 320, steps_per_epoch * 340
],
'values': [0.32, 0.032, 0.0032],
}
},
'warmup': {
'type': 'linear',
'linear': {
'warmup_steps': 2000,
'warmup_learning_rate': 0.0067
}
}
})),
restrictions=[
'task.train_data.is_training != None',
'task.validation_data.is_training != None',
])
return config
|