Spaces:
Runtime error
Runtime error
File size: 6,082 Bytes
5672777 93528c6 5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataclasses for optimization configs.
This file define the dataclass for optimization configs (OptimizationConfig).
It also has two helper functions get_optimizer_config, and get_lr_config from
an OptimizationConfig class.
"""
from typing import Optional
import dataclasses
from official.modeling.hyperparams import base_config
from official.modeling.hyperparams import oneof
from official.modeling.optimization.configs import learning_rate_config as lr_cfg
from official.modeling.optimization.configs import optimizer_config as opt_cfg
@dataclasses.dataclass
class OptimizerConfig(oneof.OneOfConfig):
"""Configuration for optimizer.
Attributes:
type: 'str', type of optimizer to be used, on the of fields below.
sgd: sgd optimizer config.
adam: adam optimizer config.
adamw: adam with weight decay.
lamb: lamb optimizer.
rmsprop: rmsprop optimizer.
lars: lars optimizer.
adagrad: adagrad optimizer.
slide: slide optimizer.
adafactor: adafactor optimizer.
adafactor_keras: adafactor optimizer.
"""
type: Optional[str] = None
sgd: opt_cfg.SGDConfig = dataclasses.field(default_factory=opt_cfg.SGDConfig)
sgd_experimental: opt_cfg.SGDExperimentalConfig = dataclasses.field(
default_factory=opt_cfg.SGDExperimentalConfig
)
adam: opt_cfg.AdamConfig = dataclasses.field(
default_factory=opt_cfg.AdamConfig
)
adam_experimental: opt_cfg.AdamExperimentalConfig = dataclasses.field(
default_factory=opt_cfg.AdamExperimentalConfig
)
adamw: opt_cfg.AdamWeightDecayConfig = dataclasses.field(
default_factory=opt_cfg.AdamWeightDecayConfig
)
adamw_experimental: opt_cfg.AdamWeightDecayExperimentalConfig = (
dataclasses.field(
default_factory=opt_cfg.AdamWeightDecayExperimentalConfig
)
)
lamb: opt_cfg.LAMBConfig = dataclasses.field(
default_factory=opt_cfg.LAMBConfig
)
rmsprop: opt_cfg.RMSPropConfig = dataclasses.field(
default_factory=opt_cfg.RMSPropConfig
)
lars: opt_cfg.LARSConfig = dataclasses.field(
default_factory=opt_cfg.LARSConfig
)
adagrad: opt_cfg.AdagradConfig = dataclasses.field(
default_factory=opt_cfg.AdagradConfig
)
slide: opt_cfg.SLIDEConfig = dataclasses.field(
default_factory=opt_cfg.SLIDEConfig
)
adafactor: opt_cfg.AdafactorConfig = dataclasses.field(
default_factory=opt_cfg.AdafactorConfig
)
adafactor_keras: opt_cfg.AdafactorKerasConfig = dataclasses.field(
default_factory=opt_cfg.AdafactorKerasConfig
)
@dataclasses.dataclass
class LrConfig(oneof.OneOfConfig):
"""Configuration for lr schedule.
Attributes:
type: 'str', type of lr schedule to be used, one of the fields below.
constant: constant learning rate config.
stepwise: stepwise learning rate config.
exponential: exponential learning rate config.
polynomial: polynomial learning rate config.
cosine: cosine learning rate config.
power: step^power learning rate config.
power_linear: learning rate config of step^power followed by
step^power*linear.
power_with_offset: power decay with a step offset.
step_cosine_with_offset: Step cosine with a step offset.
"""
type: Optional[str] = None
constant: lr_cfg.ConstantLrConfig = dataclasses.field(
default_factory=lr_cfg.ConstantLrConfig
)
stepwise: lr_cfg.StepwiseLrConfig = dataclasses.field(
default_factory=lr_cfg.StepwiseLrConfig
)
exponential: lr_cfg.ExponentialLrConfig = dataclasses.field(
default_factory=lr_cfg.ExponentialLrConfig
)
polynomial: lr_cfg.PolynomialLrConfig = dataclasses.field(
default_factory=lr_cfg.PolynomialLrConfig
)
cosine: lr_cfg.CosineLrConfig = dataclasses.field(
default_factory=lr_cfg.CosineLrConfig
)
power: lr_cfg.DirectPowerLrConfig = dataclasses.field(
default_factory=lr_cfg.DirectPowerLrConfig
)
power_linear: lr_cfg.PowerAndLinearDecayLrConfig = dataclasses.field(
default_factory=lr_cfg.PowerAndLinearDecayLrConfig
)
power_with_offset: lr_cfg.PowerDecayWithOffsetLrConfig = dataclasses.field(
default_factory=lr_cfg.PowerDecayWithOffsetLrConfig
)
step_cosine_with_offset: lr_cfg.StepCosineLrConfig = dataclasses.field(
default_factory=lr_cfg.StepCosineLrConfig
)
@dataclasses.dataclass
class WarmupConfig(oneof.OneOfConfig):
"""Configuration for lr schedule.
Attributes:
type: 'str', type of warmup schedule to be used, one of the fields below.
linear: linear warmup config.
polynomial: polynomial warmup config.
"""
type: Optional[str] = None
linear: lr_cfg.LinearWarmupConfig = dataclasses.field(
default_factory=lr_cfg.LinearWarmupConfig
)
polynomial: lr_cfg.PolynomialWarmupConfig = dataclasses.field(
default_factory=lr_cfg.PolynomialWarmupConfig
)
@dataclasses.dataclass
class OptimizationConfig(base_config.Config):
"""Configuration for optimizer and learning rate schedule.
Attributes:
optimizer: optimizer oneof config.
ema: optional exponential moving average optimizer config, if specified, ema
optimizer will be used.
learning_rate: learning rate oneof config.
warmup: warmup oneof config.
"""
optimizer: OptimizerConfig = dataclasses.field(
default_factory=OptimizerConfig
)
ema: Optional[opt_cfg.EMAConfig] = None
learning_rate: LrConfig = dataclasses.field(default_factory=LrConfig)
warmup: WarmupConfig = dataclasses.field(default_factory=WarmupConfig)
|