File size: 4,643 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for multitask.evaluator."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras

from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.core import base_task
from official.core import config_definitions as cfg
from official.modeling.multitask import evaluator


def all_strategy_combinations():
  return combinations.combine(
      distribution=[
          strategy_combinations.default_strategy,
          strategy_combinations.cloud_tpu_strategy,
          strategy_combinations.one_device_strategy_gpu,
      ],
      mode="eager",
  )


class MockModel(tf_keras.Model):

  def __init__(self, *args, **kwargs):
    super().__init__(*args, **kwargs)
    self.dense = tf_keras.layers.Dense(1)

  def call(self, inputs):
    print(inputs, type(inputs))
    if "y" in inputs:
      self.add_loss(tf.zeros((1,), dtype=tf.float32))
    else:
      self.add_loss(tf.ones((1,), dtype=tf.float32))
    return self.dense(inputs["x"])


class MockTask(base_task.Task):
  """Mock task object for testing."""

  def build_metrics(self, training: bool = True):
    del training
    return [tf_keras.metrics.Accuracy(name="acc")]

  def build_inputs(self, params):

    def generate_data(_):
      x = tf.zeros(shape=(2,), dtype=tf.float32)
      label = tf.zeros([1], dtype=tf.int32)
      if self.name == "bar":
        return dict(x=x, y=x), label
      else:
        return dict(x=x), label

    dataset = tf.data.Dataset.range(1)
    dataset = dataset.repeat()
    dataset = dataset.map(
        generate_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    return dataset.prefetch(buffer_size=1).batch(2, drop_remainder=True)

  def validation_step(self, inputs, model: tf_keras.Model, metrics=None):
    logs = super().validation_step(inputs, model, metrics)
    logs["counter"] = tf.ones((1,), dtype=tf.float32)
    return logs

  def aggregate_logs(self, state, step_outputs):
    if state is None:
      state = {}
    for key, value in step_outputs.items():
      if key not in state:
        state[key] = []
      state[key].append(
          np.concatenate([np.expand_dims(v.numpy(), axis=0) for v in value]))
    return state

  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
    for k, v in aggregated_logs.items():
      aggregated_logs[k] = np.sum(np.stack(v, axis=0))
    return aggregated_logs


class EvaluatorTest(tf.test.TestCase, parameterized.TestCase):

  @combinations.generate(all_strategy_combinations())
  def test_multitask_evaluator(self, distribution):
    with distribution.scope():
      tasks = [
          MockTask(params=cfg.TaskConfig(), name="bar"),
          MockTask(params=cfg.TaskConfig(), name="foo")
      ]
      model = MockModel()
      test_evaluator = evaluator.MultiTaskEvaluator(
          eval_tasks=tasks, model=model)
      results = test_evaluator.evaluate(tf.convert_to_tensor(1, dtype=tf.int32))
    self.assertContainsSubset(["validation_loss", "acc"], results["bar"].keys())
    self.assertContainsSubset(["validation_loss", "acc"], results["foo"].keys())
    self.assertEqual(results["bar"]["validation_loss"], 0.0)
    self.assertEqual(results["foo"]["validation_loss"], 1.0)

  @combinations.generate(all_strategy_combinations())
  def test_multitask_evaluator_numpy_metrics(self, distribution):
    with distribution.scope():
      tasks = [
          MockTask(params=cfg.TaskConfig(), name="bar"),
          MockTask(params=cfg.TaskConfig(), name="foo")
      ]
      model = MockModel()
      test_evaluator = evaluator.MultiTaskEvaluator(
          eval_tasks=tasks, model=model)
      results = test_evaluator.evaluate(tf.convert_to_tensor(5, dtype=tf.int32))
    self.assertEqual(results["bar"]["counter"],
                     5. * distribution.num_replicas_in_sync)
    self.assertEqual(results["foo"]["counter"],
                     5. * distribution.num_replicas_in_sync)


if __name__ == "__main__":
  tf.test.main()