File size: 17,076 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Losses for maskrcnn model."""

# Import libraries
import tensorflow as tf, tf_keras


class RpnScoreLoss(object):
  """Region Proposal Network score loss function."""

  def __init__(self, rpn_batch_size_per_im):
    self._rpn_batch_size_per_im = rpn_batch_size_per_im
    self._binary_crossentropy = tf_keras.losses.BinaryCrossentropy(
        reduction=tf_keras.losses.Reduction.SUM, from_logits=True)

  def __call__(self, score_outputs, labels):
    """Computes total RPN detection loss.

    Computes total RPN detection loss including box and score from all levels.

    Args:
      score_outputs: an OrderDict with keys representing levels and values
        representing scores in [batch_size, height, width, num_anchors].
      labels: the dictionary that returned from dataloader that includes
        ground-truth targets.

    Returns:
      rpn_score_loss: a scalar tensor representing total score loss.
    """
    with tf.name_scope('rpn_loss'):
      levels = sorted(score_outputs.keys())

      score_losses = []
      for level in levels:
        score_losses.append(
            self._rpn_score_loss(
                score_outputs[level],
                labels[level],
                normalizer=tf.cast(
                    tf.shape(score_outputs[level])[0] *
                    self._rpn_batch_size_per_im,
                    dtype=score_outputs[level].dtype)))

      # Sums per level losses to total loss.
      return tf.math.add_n(score_losses)

  def _rpn_score_loss(self, score_outputs, score_targets, normalizer=1.0):
    """Computes score loss."""
    # score_targets has three values:
    # (1) score_targets[i]=1, the anchor is a positive sample.
    # (2) score_targets[i]=0, negative.
    # (3) score_targets[i]=-1, the anchor is don't care (ignore).
    with tf.name_scope('rpn_score_loss'):
      mask = tf.math.logical_or(tf.math.equal(score_targets, 1),
                                tf.math.equal(score_targets, 0))

      score_targets = tf.math.maximum(score_targets,
                                      tf.zeros_like(score_targets))

      score_targets = tf.expand_dims(score_targets, axis=-1)
      score_outputs = tf.expand_dims(score_outputs, axis=-1)
      score_loss = self._binary_crossentropy(
          score_targets, score_outputs, sample_weight=mask)

      score_loss /= normalizer
      return score_loss


class RpnBoxLoss(object):
  """Region Proposal Network box regression loss function."""

  def __init__(self, huber_loss_delta: float):
    # The delta is typically around the mean value of regression target.
    # for instances, the regression targets of 512x512 input with 6 anchors on
    # P2-P6 pyramid is about [0.1, 0.1, 0.2, 0.2].
    self._huber_loss = tf_keras.losses.Huber(
        delta=huber_loss_delta, reduction=tf_keras.losses.Reduction.SUM)

  def __call__(self, box_outputs, labels):
    """Computes total RPN detection loss.

    Computes total RPN detection loss including box and score from all levels.

    Args:
      box_outputs: an OrderDict with keys representing levels and values
        representing box regression targets in [batch_size, height, width,
        num_anchors * 4].
      labels: the dictionary that returned from dataloader that includes
        ground-truth targets.

    Returns:
      rpn_box_loss: a scalar tensor representing total box regression loss.
    """
    with tf.name_scope('rpn_loss'):
      levels = sorted(box_outputs.keys())

      box_losses = []
      for level in levels:
        box_losses.append(self._rpn_box_loss(box_outputs[level], labels[level]))

      # Sum per level losses to total loss.
      return tf.add_n(box_losses)

  def _rpn_box_loss(self, box_outputs, box_targets, normalizer=1.0):
    """Computes box regression loss."""
    with tf.name_scope('rpn_box_loss'):
      _, height, width, num_anchors_vertices = box_targets.get_shape().as_list()
      # (batch_size, height, width, num_anchors, 4)
      reshaped_box_targets = tf.reshape(
          box_targets, [-1, height, width, num_anchors_vertices // 4, 4])
      # The box is valid if at least one of the ymin, xmin, ymax, ymax is not 0.
      # (batch_size, height, width, num_anchors)
      valid_mask = tf.reduce_any(
          tf.math.abs(reshaped_box_targets) > 1e-6, axis=-1)
      # (batch_size, height, width, num_anchors * 4)
      valid_mask = tf.cast(
          tf.repeat(valid_mask, 4, axis=-1), dtype=box_outputs.dtype)
      # (batch_size, height, width, num_anchors * 4, 1)
      box_targets = tf.expand_dims(box_targets, axis=-1)
      # (batch_size, height, width, num_anchors * 4, 1)
      box_outputs = tf.expand_dims(box_outputs, axis=-1)
      box_loss = self._huber_loss(
          box_targets, box_outputs, sample_weight=valid_mask)
      # The loss is normalized by the sum of non-zero weights and additional
      # normalizer provided by the function caller. Using + 0.01 here to avoid
      # division by zero. For each replica, get the sum of non-zero masks. Then
      # get the mean of sums from all replicas. Note there is an extra division
      # by `num_replicas` in train_step(). So it is equivalent to normalizing
      # the box loss by the global sum of non-zero masks.
      replica_context = tf.distribute.get_replica_context()
      valid_mask = tf.reduce_sum(valid_mask)
      valid_mask_mean = replica_context.all_reduce(
          tf.distribute.ReduceOp.MEAN, valid_mask
      )
      box_loss /= normalizer * (valid_mask_mean + 0.01)
      return box_loss


class FastrcnnClassLoss(object):
  """Fast R-CNN classification loss function."""

  def __init__(self,
               use_binary_cross_entropy: bool = False,
               top_k_percent: float = 1.0):
    """Initializes loss computation.

    Args:
      use_binary_cross_entropy: If true, uses binary cross entropy loss,
        otherwise uses categorical cross entropy loss.
      top_k_percent: a float, the value lies in [0.0, 1.0]. When its value < 1.,
        only aggregate the top k percent of losses. This is useful for hard
        example mining.
    """
    self._use_binary_cross_entropy = use_binary_cross_entropy
    self._top_k_percent = top_k_percent

  def __call__(self, class_outputs, class_targets, class_weights=None):
    """Computes the class loss (Fast-RCNN branch) of Mask-RCNN.

    This function implements the classification loss of the Fast-RCNN.

    The classification loss is categorical (or binary) cross entropy on all
    RoIs.
    Reference:
    https://github.com/facebookresearch/Detectron/blob/master/detectron/modeling/fast_rcnn_heads.py
    # pylint: disable=line-too-long

    Args:
      class_outputs: a float tensor representing the class prediction for each
        box with a shape of [batch_size, num_boxes, num_classes].
      class_targets: a float tensor representing the class label for each box
        with a shape of [batch_size, num_boxes].
      class_weights: A float list containing the weight of each class.

    Returns:
      a scalar tensor representing total class loss.
    """
    with tf.name_scope('fast_rcnn_loss'):
      output_dtype = class_outputs.dtype
      num_classes = class_outputs.get_shape().as_list()[-1]
      class_weights = (
          class_weights if class_weights is not None else [1.0] * num_classes
      )
      if num_classes != len(class_weights):
        raise ValueError(
            'Length of class_weights should be {}'.format(num_classes)
        )

      class_weights = tf.constant(class_weights, dtype=output_dtype)

      class_targets_one_hot = tf.one_hot(
          tf.cast(class_targets, dtype=tf.int32),
          num_classes,
          dtype=class_outputs.dtype)
      if self._use_binary_cross_entropy:
        # (batch_size, num_boxes, num_classes)
        cross_entropy_loss = tf.nn.sigmoid_cross_entropy_with_logits(
            labels=class_targets_one_hot, logits=class_outputs)
        cross_entropy_loss *= class_weights
      else:
        # (batch_size, num_boxes)
        cross_entropy_loss = tf.nn.softmax_cross_entropy_with_logits(
            labels=class_targets_one_hot, logits=class_outputs)
        class_weight_mask = tf.einsum(
            '...y,y->...', class_targets_one_hot, class_weights
        )
        cross_entropy_loss *= class_weight_mask

      if self._top_k_percent < 1.0:
        return self.aggregate_loss_top_k(cross_entropy_loss)
      else:
        return tf.reduce_mean(cross_entropy_loss)

  def aggregate_loss_top_k(self, loss, num_valid_values=None):
    """Aggregate the top-k the greatest loss values.

    Args:
      loss: a float tensor in shape (batch_size, num_boxes) or (batch_size,
        num_boxes, num_classes) which stores the loss values.
      num_valid_values: the number of loss values which are not ignored. The
        default value is None, which means all the loss values are valid.

    Returns:
      A 0-D float which stores the overall loss of the batch.
    """
    loss = tf.reshape(loss, shape=[-1])
    top_k_num = tf.cast(
        self._top_k_percent * tf.size(loss, out_type=tf.float32), tf.int32)
    top_k_losses, _ = tf.math.top_k(loss, k=top_k_num)
    normalizer = tf.cast(top_k_num, loss.dtype)
    if num_valid_values is not None:
      normalizer = tf.minimum(normalizer, tf.cast(num_valid_values, loss.dtype))
    return tf.reduce_sum(top_k_losses) / (normalizer + 1e-5)


class FastrcnnBoxLoss(object):
  """Fast R-CNN box regression loss function."""

  def __init__(self,
               huber_loss_delta: float,
               class_agnostic_bbox_pred: bool = False):
    """Initiate Faster RCNN box loss.

    Args:
      huber_loss_delta: the delta is typically around the mean value of
        regression target. For instances, the regression targets of 512x512
        input with 6 anchors on P2-P6 pyramid is about [0.1, 0.1, 0.2, 0.2].
      class_agnostic_bbox_pred: if True, class agnostic bounding box prediction
        is performed.
    """
    self._huber_loss = tf_keras.losses.Huber(
        delta=huber_loss_delta, reduction=tf_keras.losses.Reduction.SUM)
    self._class_agnostic_bbox_pred = class_agnostic_bbox_pred

  def __call__(self, box_outputs, class_targets, box_targets):
    """Computes the box loss (Fast-RCNN branch) of Mask-RCNN.

    This function implements the box regression loss of the Fast-RCNN. As the
    `box_outputs` produces `num_classes` boxes for each RoI, the reference model
    expands `box_targets` to match the shape of `box_outputs` and selects only
    the target that the RoI has a maximum overlap. (Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/roi_data/fast_rcnn.py)  # pylint: disable=line-too-long
    Instead, this function selects the `box_outputs` by the `class_targets` so
    that it doesn't expand `box_targets`.

    The box loss is smooth L1-loss on only positive samples of RoIs.
    Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/modeling/fast_rcnn_heads.py  # pylint: disable=line-too-long

    Args:
      box_outputs: a float tensor representing the box prediction for each box
        with a shape of [batch_size, num_boxes, num_classes * 4].
      class_targets: a float tensor representing the class label for each box
        with a shape of [batch_size, num_boxes].
      box_targets: a float tensor representing the box label for each box
        with a shape of [batch_size, num_boxes, 4].

    Returns:
      box_loss: a scalar tensor representing total box regression loss.
    """
    with tf.name_scope('fast_rcnn_loss'):
      class_targets = tf.cast(class_targets, dtype=tf.int32)
      if not self._class_agnostic_bbox_pred:
        box_outputs = self._assign_class_targets(box_outputs, class_targets)

      return self._fast_rcnn_box_loss(box_outputs, box_targets, class_targets)

  def _assign_class_targets(self, box_outputs, class_targets):
    """Selects the box from `box_outputs` based on `class_targets`, with which the box has the maximum overlap."""
    _, num_rois, num_class_specific_boxes = box_outputs.get_shape().as_list()
    num_classes = num_class_specific_boxes // 4
    box_outputs = tf.reshape(box_outputs, [-1, num_rois, num_classes, 4])
    class_targets_ont_hot = tf.one_hot(
        class_targets, num_classes, dtype=box_outputs.dtype
    )
    return tf.einsum('bnij,bni->bnj', box_outputs, class_targets_ont_hot)

  def _fast_rcnn_box_loss(self, box_outputs, box_targets, class_targets,
                          normalizer=1.0):
    """Computes box regression loss."""
    with tf.name_scope('fast_rcnn_box_loss'):
      mask = tf.tile(
          tf.expand_dims(tf.greater(class_targets, 0), axis=2), [1, 1, 4])
      mask = tf.cast(mask, dtype=box_outputs.dtype)
      box_targets = tf.expand_dims(box_targets, axis=-1)
      box_outputs = tf.expand_dims(box_outputs, axis=-1)
      box_loss = self._huber_loss(box_targets, box_outputs, sample_weight=mask)
      # The loss is normalized by the number of ones in mask,
      # additional normalizer provided by the user and using 0.01 here to avoid
      # division by 0. For each replica, get the sum of non-zero masks. Then
      # get the mean of sums from all replicas. Note there is an extra division
      # by `num_replicas` in train_step(). So it is equivalent to normalizing
      # the box loss by the global sum of non-zero masks.
      replica_context = tf.distribute.get_replica_context()
      mask = tf.reduce_sum(mask)
      mask_mean = replica_context.all_reduce(
          tf.distribute.ReduceOp.MEAN, mask
      )
      box_loss /= normalizer * (mask_mean + 0.01)
      return box_loss


class MaskrcnnLoss(object):
  """Mask R-CNN instance segmentation mask loss function."""

  def __init__(self):
    self._binary_crossentropy = tf_keras.losses.BinaryCrossentropy(
        reduction=tf_keras.losses.Reduction.SUM, from_logits=True)

  def __call__(self, mask_outputs, mask_targets, select_class_targets):
    """Computes the mask loss of Mask-RCNN.

    This function implements the mask loss of Mask-RCNN. As the `mask_outputs`
    produces `num_classes` masks for each RoI, the reference model expands
    `mask_targets` to match the shape of `mask_outputs` and selects only the
    target that the RoI has a maximum overlap. (Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/roi_data/mask_rcnn.py)  # pylint: disable=line-too-long
    Instead, this implementation selects the `mask_outputs` by the
    `class_targets` so that it doesn't expand `mask_targets`. Note that the
    selection logic is done in the post-processing of mask_rcnn_fn in
    mask_rcnn_architecture.py.

    Args:
      mask_outputs: a float tensor representing the prediction for each mask,
        with a shape of
        [batch_size, num_masks, mask_height, mask_width].
      mask_targets: a float tensor representing the binary mask of ground truth
        labels for each mask with a shape of
        [batch_size, num_masks, mask_height, mask_width].
      select_class_targets: a tensor with a shape of [batch_size, num_masks],
        representing the foreground mask targets.

    Returns:
      mask_loss: a float tensor representing total mask loss.
    """
    with tf.name_scope('mask_rcnn_loss'):
      _, _, mask_height, mask_width = mask_outputs.get_shape().as_list()

      weights = tf.tile(
          tf.greater(select_class_targets, 0)[:, :, tf.newaxis, tf.newaxis],
          [1, 1, mask_height, mask_width],
      )
      weights = tf.cast(weights, dtype=mask_outputs.dtype)

      mask_targets = tf.expand_dims(mask_targets, axis=-1)
      mask_outputs = tf.expand_dims(mask_outputs, axis=-1)
      mask_loss = self._binary_crossentropy(mask_targets, mask_outputs,
                                            sample_weight=weights)
      # For each replica, get the sum of non-zero weights. Then get the mean of
      # sums from all replicas. Note there is an extra division by
      # `num_replicas` in train_step(). So it is equivalent to normalizing the
      # mask loss by the global sum of non-zero weights.
      replica_context = tf.distribute.get_replica_context()
      weights = tf.reduce_sum(weights)
      weights_mean = replica_context.all_reduce(
          tf.distribute.ReduceOp.MEAN, weights
      )
      # The loss is normalized by the number of 1's in weights and
      # + 0.01 is used to avoid division by zero.
      return mask_loss / (weights_mean + 0.01)