Spaces:
Runtime error
Runtime error
File size: 17,076 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Losses for maskrcnn model."""
# Import libraries
import tensorflow as tf, tf_keras
class RpnScoreLoss(object):
"""Region Proposal Network score loss function."""
def __init__(self, rpn_batch_size_per_im):
self._rpn_batch_size_per_im = rpn_batch_size_per_im
self._binary_crossentropy = tf_keras.losses.BinaryCrossentropy(
reduction=tf_keras.losses.Reduction.SUM, from_logits=True)
def __call__(self, score_outputs, labels):
"""Computes total RPN detection loss.
Computes total RPN detection loss including box and score from all levels.
Args:
score_outputs: an OrderDict with keys representing levels and values
representing scores in [batch_size, height, width, num_anchors].
labels: the dictionary that returned from dataloader that includes
ground-truth targets.
Returns:
rpn_score_loss: a scalar tensor representing total score loss.
"""
with tf.name_scope('rpn_loss'):
levels = sorted(score_outputs.keys())
score_losses = []
for level in levels:
score_losses.append(
self._rpn_score_loss(
score_outputs[level],
labels[level],
normalizer=tf.cast(
tf.shape(score_outputs[level])[0] *
self._rpn_batch_size_per_im,
dtype=score_outputs[level].dtype)))
# Sums per level losses to total loss.
return tf.math.add_n(score_losses)
def _rpn_score_loss(self, score_outputs, score_targets, normalizer=1.0):
"""Computes score loss."""
# score_targets has three values:
# (1) score_targets[i]=1, the anchor is a positive sample.
# (2) score_targets[i]=0, negative.
# (3) score_targets[i]=-1, the anchor is don't care (ignore).
with tf.name_scope('rpn_score_loss'):
mask = tf.math.logical_or(tf.math.equal(score_targets, 1),
tf.math.equal(score_targets, 0))
score_targets = tf.math.maximum(score_targets,
tf.zeros_like(score_targets))
score_targets = tf.expand_dims(score_targets, axis=-1)
score_outputs = tf.expand_dims(score_outputs, axis=-1)
score_loss = self._binary_crossentropy(
score_targets, score_outputs, sample_weight=mask)
score_loss /= normalizer
return score_loss
class RpnBoxLoss(object):
"""Region Proposal Network box regression loss function."""
def __init__(self, huber_loss_delta: float):
# The delta is typically around the mean value of regression target.
# for instances, the regression targets of 512x512 input with 6 anchors on
# P2-P6 pyramid is about [0.1, 0.1, 0.2, 0.2].
self._huber_loss = tf_keras.losses.Huber(
delta=huber_loss_delta, reduction=tf_keras.losses.Reduction.SUM)
def __call__(self, box_outputs, labels):
"""Computes total RPN detection loss.
Computes total RPN detection loss including box and score from all levels.
Args:
box_outputs: an OrderDict with keys representing levels and values
representing box regression targets in [batch_size, height, width,
num_anchors * 4].
labels: the dictionary that returned from dataloader that includes
ground-truth targets.
Returns:
rpn_box_loss: a scalar tensor representing total box regression loss.
"""
with tf.name_scope('rpn_loss'):
levels = sorted(box_outputs.keys())
box_losses = []
for level in levels:
box_losses.append(self._rpn_box_loss(box_outputs[level], labels[level]))
# Sum per level losses to total loss.
return tf.add_n(box_losses)
def _rpn_box_loss(self, box_outputs, box_targets, normalizer=1.0):
"""Computes box regression loss."""
with tf.name_scope('rpn_box_loss'):
_, height, width, num_anchors_vertices = box_targets.get_shape().as_list()
# (batch_size, height, width, num_anchors, 4)
reshaped_box_targets = tf.reshape(
box_targets, [-1, height, width, num_anchors_vertices // 4, 4])
# The box is valid if at least one of the ymin, xmin, ymax, ymax is not 0.
# (batch_size, height, width, num_anchors)
valid_mask = tf.reduce_any(
tf.math.abs(reshaped_box_targets) > 1e-6, axis=-1)
# (batch_size, height, width, num_anchors * 4)
valid_mask = tf.cast(
tf.repeat(valid_mask, 4, axis=-1), dtype=box_outputs.dtype)
# (batch_size, height, width, num_anchors * 4, 1)
box_targets = tf.expand_dims(box_targets, axis=-1)
# (batch_size, height, width, num_anchors * 4, 1)
box_outputs = tf.expand_dims(box_outputs, axis=-1)
box_loss = self._huber_loss(
box_targets, box_outputs, sample_weight=valid_mask)
# The loss is normalized by the sum of non-zero weights and additional
# normalizer provided by the function caller. Using + 0.01 here to avoid
# division by zero. For each replica, get the sum of non-zero masks. Then
# get the mean of sums from all replicas. Note there is an extra division
# by `num_replicas` in train_step(). So it is equivalent to normalizing
# the box loss by the global sum of non-zero masks.
replica_context = tf.distribute.get_replica_context()
valid_mask = tf.reduce_sum(valid_mask)
valid_mask_mean = replica_context.all_reduce(
tf.distribute.ReduceOp.MEAN, valid_mask
)
box_loss /= normalizer * (valid_mask_mean + 0.01)
return box_loss
class FastrcnnClassLoss(object):
"""Fast R-CNN classification loss function."""
def __init__(self,
use_binary_cross_entropy: bool = False,
top_k_percent: float = 1.0):
"""Initializes loss computation.
Args:
use_binary_cross_entropy: If true, uses binary cross entropy loss,
otherwise uses categorical cross entropy loss.
top_k_percent: a float, the value lies in [0.0, 1.0]. When its value < 1.,
only aggregate the top k percent of losses. This is useful for hard
example mining.
"""
self._use_binary_cross_entropy = use_binary_cross_entropy
self._top_k_percent = top_k_percent
def __call__(self, class_outputs, class_targets, class_weights=None):
"""Computes the class loss (Fast-RCNN branch) of Mask-RCNN.
This function implements the classification loss of the Fast-RCNN.
The classification loss is categorical (or binary) cross entropy on all
RoIs.
Reference:
https://github.com/facebookresearch/Detectron/blob/master/detectron/modeling/fast_rcnn_heads.py
# pylint: disable=line-too-long
Args:
class_outputs: a float tensor representing the class prediction for each
box with a shape of [batch_size, num_boxes, num_classes].
class_targets: a float tensor representing the class label for each box
with a shape of [batch_size, num_boxes].
class_weights: A float list containing the weight of each class.
Returns:
a scalar tensor representing total class loss.
"""
with tf.name_scope('fast_rcnn_loss'):
output_dtype = class_outputs.dtype
num_classes = class_outputs.get_shape().as_list()[-1]
class_weights = (
class_weights if class_weights is not None else [1.0] * num_classes
)
if num_classes != len(class_weights):
raise ValueError(
'Length of class_weights should be {}'.format(num_classes)
)
class_weights = tf.constant(class_weights, dtype=output_dtype)
class_targets_one_hot = tf.one_hot(
tf.cast(class_targets, dtype=tf.int32),
num_classes,
dtype=class_outputs.dtype)
if self._use_binary_cross_entropy:
# (batch_size, num_boxes, num_classes)
cross_entropy_loss = tf.nn.sigmoid_cross_entropy_with_logits(
labels=class_targets_one_hot, logits=class_outputs)
cross_entropy_loss *= class_weights
else:
# (batch_size, num_boxes)
cross_entropy_loss = tf.nn.softmax_cross_entropy_with_logits(
labels=class_targets_one_hot, logits=class_outputs)
class_weight_mask = tf.einsum(
'...y,y->...', class_targets_one_hot, class_weights
)
cross_entropy_loss *= class_weight_mask
if self._top_k_percent < 1.0:
return self.aggregate_loss_top_k(cross_entropy_loss)
else:
return tf.reduce_mean(cross_entropy_loss)
def aggregate_loss_top_k(self, loss, num_valid_values=None):
"""Aggregate the top-k the greatest loss values.
Args:
loss: a float tensor in shape (batch_size, num_boxes) or (batch_size,
num_boxes, num_classes) which stores the loss values.
num_valid_values: the number of loss values which are not ignored. The
default value is None, which means all the loss values are valid.
Returns:
A 0-D float which stores the overall loss of the batch.
"""
loss = tf.reshape(loss, shape=[-1])
top_k_num = tf.cast(
self._top_k_percent * tf.size(loss, out_type=tf.float32), tf.int32)
top_k_losses, _ = tf.math.top_k(loss, k=top_k_num)
normalizer = tf.cast(top_k_num, loss.dtype)
if num_valid_values is not None:
normalizer = tf.minimum(normalizer, tf.cast(num_valid_values, loss.dtype))
return tf.reduce_sum(top_k_losses) / (normalizer + 1e-5)
class FastrcnnBoxLoss(object):
"""Fast R-CNN box regression loss function."""
def __init__(self,
huber_loss_delta: float,
class_agnostic_bbox_pred: bool = False):
"""Initiate Faster RCNN box loss.
Args:
huber_loss_delta: the delta is typically around the mean value of
regression target. For instances, the regression targets of 512x512
input with 6 anchors on P2-P6 pyramid is about [0.1, 0.1, 0.2, 0.2].
class_agnostic_bbox_pred: if True, class agnostic bounding box prediction
is performed.
"""
self._huber_loss = tf_keras.losses.Huber(
delta=huber_loss_delta, reduction=tf_keras.losses.Reduction.SUM)
self._class_agnostic_bbox_pred = class_agnostic_bbox_pred
def __call__(self, box_outputs, class_targets, box_targets):
"""Computes the box loss (Fast-RCNN branch) of Mask-RCNN.
This function implements the box regression loss of the Fast-RCNN. As the
`box_outputs` produces `num_classes` boxes for each RoI, the reference model
expands `box_targets` to match the shape of `box_outputs` and selects only
the target that the RoI has a maximum overlap. (Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/roi_data/fast_rcnn.py) # pylint: disable=line-too-long
Instead, this function selects the `box_outputs` by the `class_targets` so
that it doesn't expand `box_targets`.
The box loss is smooth L1-loss on only positive samples of RoIs.
Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/modeling/fast_rcnn_heads.py # pylint: disable=line-too-long
Args:
box_outputs: a float tensor representing the box prediction for each box
with a shape of [batch_size, num_boxes, num_classes * 4].
class_targets: a float tensor representing the class label for each box
with a shape of [batch_size, num_boxes].
box_targets: a float tensor representing the box label for each box
with a shape of [batch_size, num_boxes, 4].
Returns:
box_loss: a scalar tensor representing total box regression loss.
"""
with tf.name_scope('fast_rcnn_loss'):
class_targets = tf.cast(class_targets, dtype=tf.int32)
if not self._class_agnostic_bbox_pred:
box_outputs = self._assign_class_targets(box_outputs, class_targets)
return self._fast_rcnn_box_loss(box_outputs, box_targets, class_targets)
def _assign_class_targets(self, box_outputs, class_targets):
"""Selects the box from `box_outputs` based on `class_targets`, with which the box has the maximum overlap."""
_, num_rois, num_class_specific_boxes = box_outputs.get_shape().as_list()
num_classes = num_class_specific_boxes // 4
box_outputs = tf.reshape(box_outputs, [-1, num_rois, num_classes, 4])
class_targets_ont_hot = tf.one_hot(
class_targets, num_classes, dtype=box_outputs.dtype
)
return tf.einsum('bnij,bni->bnj', box_outputs, class_targets_ont_hot)
def _fast_rcnn_box_loss(self, box_outputs, box_targets, class_targets,
normalizer=1.0):
"""Computes box regression loss."""
with tf.name_scope('fast_rcnn_box_loss'):
mask = tf.tile(
tf.expand_dims(tf.greater(class_targets, 0), axis=2), [1, 1, 4])
mask = tf.cast(mask, dtype=box_outputs.dtype)
box_targets = tf.expand_dims(box_targets, axis=-1)
box_outputs = tf.expand_dims(box_outputs, axis=-1)
box_loss = self._huber_loss(box_targets, box_outputs, sample_weight=mask)
# The loss is normalized by the number of ones in mask,
# additional normalizer provided by the user and using 0.01 here to avoid
# division by 0. For each replica, get the sum of non-zero masks. Then
# get the mean of sums from all replicas. Note there is an extra division
# by `num_replicas` in train_step(). So it is equivalent to normalizing
# the box loss by the global sum of non-zero masks.
replica_context = tf.distribute.get_replica_context()
mask = tf.reduce_sum(mask)
mask_mean = replica_context.all_reduce(
tf.distribute.ReduceOp.MEAN, mask
)
box_loss /= normalizer * (mask_mean + 0.01)
return box_loss
class MaskrcnnLoss(object):
"""Mask R-CNN instance segmentation mask loss function."""
def __init__(self):
self._binary_crossentropy = tf_keras.losses.BinaryCrossentropy(
reduction=tf_keras.losses.Reduction.SUM, from_logits=True)
def __call__(self, mask_outputs, mask_targets, select_class_targets):
"""Computes the mask loss of Mask-RCNN.
This function implements the mask loss of Mask-RCNN. As the `mask_outputs`
produces `num_classes` masks for each RoI, the reference model expands
`mask_targets` to match the shape of `mask_outputs` and selects only the
target that the RoI has a maximum overlap. (Reference: https://github.com/facebookresearch/Detectron/blob/master/detectron/roi_data/mask_rcnn.py) # pylint: disable=line-too-long
Instead, this implementation selects the `mask_outputs` by the
`class_targets` so that it doesn't expand `mask_targets`. Note that the
selection logic is done in the post-processing of mask_rcnn_fn in
mask_rcnn_architecture.py.
Args:
mask_outputs: a float tensor representing the prediction for each mask,
with a shape of
[batch_size, num_masks, mask_height, mask_width].
mask_targets: a float tensor representing the binary mask of ground truth
labels for each mask with a shape of
[batch_size, num_masks, mask_height, mask_width].
select_class_targets: a tensor with a shape of [batch_size, num_masks],
representing the foreground mask targets.
Returns:
mask_loss: a float tensor representing total mask loss.
"""
with tf.name_scope('mask_rcnn_loss'):
_, _, mask_height, mask_width = mask_outputs.get_shape().as_list()
weights = tf.tile(
tf.greater(select_class_targets, 0)[:, :, tf.newaxis, tf.newaxis],
[1, 1, mask_height, mask_width],
)
weights = tf.cast(weights, dtype=mask_outputs.dtype)
mask_targets = tf.expand_dims(mask_targets, axis=-1)
mask_outputs = tf.expand_dims(mask_outputs, axis=-1)
mask_loss = self._binary_crossentropy(mask_targets, mask_outputs,
sample_weight=weights)
# For each replica, get the sum of non-zero weights. Then get the mean of
# sums from all replicas. Note there is an extra division by
# `num_replicas` in train_step(). So it is equivalent to normalizing the
# mask loss by the global sum of non-zero weights.
replica_context = tf.distribute.get_replica_context()
weights = tf.reduce_sum(weights)
weights_mean = replica_context.all_reduce(
tf.distribute.ReduceOp.MEAN, weights
)
# The loss is normalized by the number of 1's in weights and
# + 0.01 is used to avoid division by zero.
return mask_loss / (weights_mean + 0.01)
|